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1 Abstract

The purchasing and storage costs of pharmaceutical items constitute a large portion of a hospital
budget. In the present work, we develop an optimization approach to identify an optimal replen-
ishment policy for a global stock within a hospital. We consider a stochastic demand, a periodic
reorder-point order-up-to level inventory control system, lost sales and a set of constraints re-
lated to the pharmaceutical supply chain like limited storage capacity, restriction on annual order
frequency and required service level. The system is modeled as a Markov chain to minimize the
holding cost. The effectiveness of the proposed search procedure is illustrated by using a real case
study of Ibn Sina univerity hospital Morocco.

2 Introduction

The main worry of hospital managers concerns the affordability and the accessibility of pharma-
ceutical items. Therefore, dissimilar to the product-based supply chain, the inventory level in a
healthcare structure is calculated based on predefined service performance outcomes. Consequently,
a large quantity of pharmaceuticals supplies are stored in hospitals to avoid shortages and permit
the healthcare staff to realize efficiently their daily work [1], [2], [3] and [4]. However, healthcare
establishments usually have limited storage capacity and an important part of hospital budget goes
for medical furniture and their handling that consume approximately 30%-40% of overall hospital
net revenue [5], [7], [8] and [9]. Consequently, it is primordial that the pharmacy managers identify
a replenishment policy that compromises between the required service level and the limited storage
capacity [10], [11] and [12].

Given this background, the present study focus on developing a replenishment model that takes
into account the trade-off between the required service level and the restriction on the storage
space. We consider a global stock (GS) that delivers pharmaceutical items to care units, which
belong to the supply chain network of Ibn Sina hospital, Rabat, Morocco. Our main aim is to
optimize inventory policy while considering a set of constraints related to the studied Pharmaceu-
tical supply chain (PSC) as stochastic demand, lost sales, limited storage capacity, annual order
frequency, desired quality service and emergency replenishment.

According to their importance in the recovery procedure, pharmaceutical products are classified
into three types, namely, vital, essential, and non-essential items. In this work, we focus on vital
and essential pharmaceutical items. This choice is motivated by the fact that these medicines are
used by several treatments and also they are very expensive which make them critical. It is for these
reasons, the GS adopts a nominative distribution to manage inventories related to these items,
more particularly, the G.S follows a periodic reorder-point order-up-to level policy (R, s, S) firstly
describes by [13]. At the end of each review period R the pharmacy staff examine the amount of
the storage quantity, if the maintaining inventory level is less than or equal to a predefined service
level s, an order is placed to replenish the stock on hand to a pre-established value S. At the time
of this study, the values of inventory policy s, .S are fixed based on ”expert knowledge” that doesn’t
consider the limited storage capacity or the restriction on the annual number of orders that the
GS is allowed to address to the suppliers.

The present work reports our optimization inventory model that minimizes the holding cost while
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including the special constraints imposed by the PSC. We start our work with a literature review
on the studied topic in section 3, then the operations research program is formulated. Section 4,
presents the discrete-time Markov Chain Model. The applicability of our Model is discussed in
section 5 followed by conclusions in section 6.

3 Related works

[14] addressed an optimization inventory problem that emerges in a single echelon PSC with
stochastic demand (normally distributed) and stochastic lead time. They considered a modern
point of use that enables pharmacy managers to adopt an improved replenishment policy, termed,
can order inventory policy (R, s,c,S). The authors developed a simple inventory rule based on
an extended model of EOQ formula to identify the best values of replenishment parameters that
minimize the total cost. Experiments show that the results obtained by this rule are comparable to
ones obtained by more sophisticated manners. [15] dealt with a problem closed to the one treated
by [14], but easier as they considered a deterministic lead time and known demand. They focused
on minimizing the cost related to managing inventories while taking into account the contradictory
objectives existing between the stakeholders in the pharmaceutical supply chain and the manage-
rial trade-offs that emerge at the tactical, operational, and strategic levels. Authors developed an
iterative search procedure based on EOQ formula and approximations developed by [16] to deter-
mine the best near-optimal value of undershoot and order quantity subject to service level, storage
space and order frequency.

[17] dealt with an inventory problem that considers the variations of the system behavior over time.
They addressed a case of a single depot with a hybrid replenishment policy, stochastic demand and
neglected lead time. Authors adopted a resolution methodology firstly introduced by [19] to opti-
mize the expected total cost given by the sum of holding cost, ordering cost and stock-out cost. [18]
also examine inventory change over time. they consider a stochastic demand (compound Poisson
distribution), limited order frequency and desired service level. Authors developed an innovative
approach based on Monte Carlo simulation to identify the near-optimal replenishment policy that
optimizes the total cost and satisfies the required service level. It is important to note at this point
that the papers reviewed so far proposed approximation techniques based on iterative procedures.
However, the development of the exact approach may offer a promising research field.

In this vein,[20] introduced a closed-form model to addressed an inventory problem raised in a point
of use within a care unit. They supposed a reorder-point order-up-to level policy replenishment
policy (R, s, S) with lost sales, short lead time and stochastic demand (Poison distributed). The
authors developed two analytical models, the first one is a service model under storage capacity,
while the second one is a capacity model with respect to the desired service level. The authors
proposed a two-step solution approach. They started by evaluating the service level value firstly
developed by [21], then a knapsack algorithm is implemented to find a good balance between the
required service level and the available storage capacity. [23] also addressed a service objective
function, by which they looked for identifying the best parameter values of a periodic par level
replenishment policy, order frequency and service level. Authors introduced a programming-based
algorithm under a set of constraints relates particularly to storage capacity and product critical-
ity.[22] also developed an exact analytical model to address an inventory problem that emerges
in a healthcare setting with two sources of uncertainty: demand and material unavailability. They
used a continuous-time Markov chain to obtain the different optimal components of the total cost
that include holding cost, shortage cost and substitution cost.

4 model and assumptions

In accordance with the present practices and with the primary aim of facilitating the proposed
models, we assume that:

— The demand encountered by the GS is stochastic (observed distributed).

— The GS follows, for each product j, a periodic review reorder-point order-up-to level replen-
ishment policy.

— The GS is replenished from trustable sources in fixed lead time (2 days).
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— The GS must supply all care units if there is stock, otherwise, the demand is considered as lost
and an emergency order can be sent by the GS to suppliers.
— The emergency purchase cost is sent to the supplier at a higher cost than the normal purchasing

cost.

With respect to these assumptions and notations listed in table 1, we now proceed to present
the proposed model by which we seek to define the optimal replenishment parameters that optimize
the expected inventory on hand.

Table 1. Inventory control policy parameters

Indices
J
Parameters
L
Dy
pE-L)
J
R
b
Dj

Q= :<‘:<

=
<.

2
<.

Mj
Decision variables
S;

Sj

Index for drugs (j =1, ....,7).

Lead time for GS.
Cumulative demand of item j in the GS in the lead time L.

Cumulative demand of item j in the GS in the non lead time R — L.

Cumulative demand of item j in the GS in the review period R.
Cumulative demand of product j in the G'S in a year.
Maximum storage capacity of item j at G.S (units).

Random variable of the stock on hand of item j in the GS.
Expected stock of item j in the GS at the review period.
Annual order frequency.

Maximum service level required by hospital complex managers.
Holding cost of item j in the C'P.

Probability of having [ units of product j in the GS at the review period.

Probability of having [ units of product j in the GS at the shifted review period.

Order-up-to level for item j.
Reorder level for item j.

We start by defining a random variable, noted Y}, as the inventory on hand of pharmaceutical
item j in the GS at the review period and YJ its corresponding expected value. Let h; be the
holding cost of item i.The analytical model of the studied inventory structure is presented in the
next stochastic program:

minFO(sj,Sj) = Z h]%

Jj=1

(1)

with this program, we look for minimizing the expected holding cost resulting from the average
inventory on hand level at the GS. This minimization is subject to a set of constraints related to:

— Service level: A minimum inventory position is maintaining, from each item j, to satisfy a

required service level of 95% or higher given by the fraction of satisfied demand.

Pr(DfSSj)Za Vi=1,...,r,

storage capacity of the GS, m;.

ijmj Vj:l,...,r,

Pr(Dj <~S;j) > a, Vi=1,...,r.

Integrality and non-negativity constraints.

Sj,SjZO, ijl,...,’l’.

(2)

Storage space: The amount quantity of product 7 on hand should not surpass the limited

(3)

Order frequency: The number of purchases orders sent by the GS is limited by the suppliers.

(4)

(5)
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5 Expected stock on hand calculation

To evaluate the expected stock on hand in the G.S, we adopt the procedure approach developed by
[21]. The first step of this approach is to calculate the transition probabilities of handling n units
of items j at the current review point given that there were m units of the same item one review
point before.

Providing that the GS follows a periodic reorder-point order-up-to level inventory policy with a

fixed lead time L, the balance equations that represent the Markov chain with state [0, S;] are
given by:

Y;() - DY) +(8 - Y;) - DR i vy < s
Yi(t+1) = (6)

(Y;(t) - DIY* i Y;(t) > s,

Based on these equations, we obtain the one-period transition probabilities as follows:
For 0 <m < s;:

m—1
P(D} =d) P(Df"" > §; — d) + P(Df > m) P(S; —m < DI ") itn =0,
d=0
m—1
Phn =1 Y P(Sj—d—n=DI")P(DF =d) + P(S; —m—n=Df") P(D} >m), if1 <n<S8;—m,
50
P(Sj—d—n=DJ") P(Dj = d) ifS; —m<n<S$,,
d=0
(7)
For s; <m < 9;:
P(Df >m) ifn =0,
Pl = P(Df:mfn) if0 <n<m, ()
0 ifm <n <8,

Then, like [21], we proceed to calculate the limiting probabilities of handling m units of product
j at the review period R by solving the following system of equations:

S;
’/ij = Z Trljp{m (9)
=0
S
D> =1 (10)
m=0

In order to facilitate calculations, we compute the shifted limiting probabilities, 7,,, of han-

dling m unit at the start of the shifted review point. These probabilities are calculated with the
expressions bellow:
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Sj

> m P(DY >1)

l:maz(k,5j+1)

Sj

l=max(k,s;+1)
SJ

N =
l=mazx(k,s;+1)
Sj 53

l=max(k,s;+1) l=S;—k+1

54
w5, P(Df =0)+ > mP(Dy =0)
=1

(11)

Now, we may calculate the expected stock on hand of product j Y;, given by the sum of the expected

value of product at the end of the shifted review point 7; and the expected inventory level of the product
J immediately after the receipt of delivers pu;.

R-1 Sj k

r=1 k=0 =1

6 Numerical results

In order to carry out numerical analysis and evaluate the efficiency of the proposed solution, the model
was programmed in Java environment and was tested using a 2.67 GHz Intel(R) Core(TM) i5 CPU system
processor with 4.00 Go of RAM. The instance was composed of one GS and 3 products. To generate
demand, we have collected daily orders data faced by the G'S over five years, then we have used this data
as an input of an algorithm, using uniform distribution and cumulative density function, that we have
developed to generate the random variable: quantity of pharmaceutical items demanded per day. Based
on the search procedure presented in the last section, we proceed to compute the optimal values of the
replenishment policy parameters for each pharmaceutical item, which satisfy the required service level
(o = 95%). The obtained results are summarized in tables (2-3).

Table 2. Inventory control policy parameters

s 8 Qm,
Product 1 267 1688 30,1%
Product 2 94 678 41,6%
Product 3 101 470 26,6%

To evaluate the performance of the actual inventory structure, we fix the value of the annual order
frequency, v = 1, and measured the corresponding file rate value. It is clear from the third column of table
2 that the storage space reserve for essential and vital drugs is insufficient which lead to a very low service
level 26,6% to 41,6%. To prevent the shortage risk and organizational issues related to managing huge
quantities of pharmaceutical items, two main solutions could be proposed, either enhancing the annual
order frequency or extending the storage space.

To analyze the efficiency of the first proposal, we examine the file rate variations for several values of
annual order frequency. Numerical results revealed that the value of the file rate enhances remarkably, still,
the value of the order frequency is also highest for such a solution. Table 4 includes the obtained results.
Note that the file rate value increases to 95% for 1 = 3,5. Similarly, the fill rate value of the second
product enhances to 96% for v2 = 3 and to 98% for 3 = 4 concerning the third product. At this point,

ifk =0,

> mP(Df=1-k) if1<k<S;—sj,

> m P(D} =1—k)+m,, P(D} > s;) if k=5S; —sj,

mi Y mPDf=l-k+ >  mP(Df =8~k +ms, k;P(Df >S;—k)ifS;—s; <k<S,

ifk=S;.
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Table 3. Objective function value

hi h§ hj Total cost
Cost 7106 278 9678 17062

we can deduce that the studied inventory structure, performing under the first proposal, enhances its fill
rate by ordering small quantities more frequently, which is not acceptable by hospital managers. Indeed,
to avoid managerial risks and rework related to logistics activities, the number of annual orders launched
by hospitals should be as small as possible. Therefore, increasing storage capacity is more applicable.

Table 4. The service level and the order frequency for the three products

Product 1 Product 2 Product 3

S1 o 7 S2 Y2 Sz a3 V3

1688 0,301 1,000 678 0,416 1,000 471 0,266 1,000
1487 0,354 1,210 644 0,441 1,250 437 0,292 1,200
1457 0,363 1,260 620 0,460 1,300 380 0,346 1,350
1334 0,405 1,360 591 0,485 1,350 350 0,381 1,500
1268 0,430 1,460 562 0,512 1,450 332 0,406 1,650
1209 0,456 1,510 538 0,537 1,500 297 0,462 1,800
1202 0,459 1,560 503 0,578 1,600 295 0,467 1,950
1155 0,481 1,660 481 0,608 1,700 283 0,488 2,050
1053 0,537 1,810 465 0,630 1,750 264 0,528 2,200
981 0,583 1,960 441 0,667 1,850 252 0,566 2,350
919 0,628 2,060 420 0,703 1,900 234 0,607 2,500
902 0,642 2,210 407 0,726 1,950 226 0,629 2,650
823 0,712 2,410 399 0,743 2,050 207 0,692 3,000
804 0,731 2,560 395 0,750 2,250 200 0,719 3,150
728 0,779 2,810 352 0,849 2,500 193 0,750 3,400
698 0,817 2,860 342 0,875 2,650 188 0,770 3,650
652 0,855 3,010 312 0,902 2,900 175 0,833 3,900
616 0,893 3,160 305 0,964 3,150 171 0,905 4,050
580 0,930 3,310 298 1,027 3,400 167 0,977 4,200
545 0,968 3,460 291 1,089 3,650 163 1,049 4,350
509 1,006 3,610 284 1,151 3,900 159 1,122 4,500
473 1,043 3,760 277 1,213 4,150 155 1,194 4,650

7 Conclusion

The primary purpose of this work is to identify the optimal replenishment parameters for inventory at
the Ibn Sina hospital complex, Rabat, Morocco. We have focused on this study on managing inventories
related to vital and essential pharmaceutical items by considering a stochastic demand, required file rate,
limited storage space and restriction on the annual order frequency. An analytical program is proposed
to formulate the studied inventory structure and a Discrete-Time Markov chain model is formulated to
compute the expected holding cost. Besides its capacity to determine the closed-form solution, the proposed
search procedure allows us to analyze the interactions between different performance characteristics.
There are multiple promising research directions to extend this work. Among which the following are
noteworthy:

— Consider all types of pharmaceutical items: non-essential and non-vital drugs.
— Treat more constraints related to PSC characteristics such as expiry dates and storage environments.
— Address the distribution decision between the GS and all hospital departments.
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Abstract

Most of the searching strategies based on path-relinking method usage are restricted by a drawback of the
method. The drawback of the original path-relinking method consists in its way of processing the pair of input
solutions. The path-relinking method applied to zero-one programming problems examines one of the shortest
paths connecting the input solutions in the surface of a unit hypercube. This characteristic does not enable to
examine any feasible solutions outside the sub-space determined by components, in which the input solutions
differ. Within our research directed to heuristics for the public service system design problems, we suggested
a new type of the path-relinking method, which is able to overcome the above-mentioned drawback. The
novelty consists in determination of an infeasible solution of the p-location problem, which corresponds to a
hypercube vertex with more than p-components, and in projection of a starting feasible solution in the set of
the feasible solutions, which are the closest ones to the infeasible solution. The suggested path-relinking
projective method was embedded into a simple one-to-all searching strategy and its efficiency dependent on
infeasibility level of the infeasible solution was studied.

Keywords: Location problems, heuristics, path-relinking method extension.

1 Introduction

The existence of human society has been always associated with decisions. Making more or less important
decisions accompanies us in various areas of everyday life, although many times we are not even aware of it.
We often encounter the requirement to find the optimal solution to a particular problem or to improve the
current situation as much as possible. The main reasons for such rationalization include reducing costs and
increasing efficiency. Choosing the right alternative from all solutions is not easy and involves a great deal of
responsibility. The final decision may not affect only our personal lives, but also the lives of a certain group
of people or even the whole society [16]. Another factor that needs to be taken into account when making a
decision is the time aspect. The consequences of a decision can be very long. In this paper, we focus only on
a strategic level of decision-making process. The time lag of strategic decisions is usually in the order of several
years. Most often, these are large-scale investment projects, such as the construction of new companies, the
location of distribution centers, or the design of various service systems. The research reported in this paper
aims at applying the knowledge of Applied Informatics and programming in the location science, mainly to
the healthcare segment [2, 4, 13].

The operation of the emergency medical service is one of the basic services by which the state protects its
inhabitants and provides them with urgent care in critical situations [13]. The main role of each manager
responsible for the efficiency of the service is to decide on the location of service centers. Centers, which can
be, for example, warehouses, terminals, or specialized medical facilities, form the structure of the proposed
system [16]. This structure plays an essential role in the efficiency of the system performance. Strategic
decisions on the location of facilities so that the total costs are kept to be minimal or the service accessibility
for patients to be as high as possible, represent a complex combinatorial problem, the solution of which can
achieve significant savings or improve the quality of the service provided. Since the resources, which are to
be located, are limited, the mathematical model used for the decision/making often follows the weighted p-
median problem formulation [1, 7, 14]. To make the model more general, the concept of so-called generalized
disutility has been introduced to consider also such requirements, which allow providing the service to a patient



from more than one nearest located service centers. Even if this model extension makes the problem harder to
be solved, it enables us to apply its results into a wider range of systems [9, 11, 15].

Wide range of practical applications of the weighted p-median problem not only in the medical sphere [13, 14,
16] has led to the creation of a large number of solving approaches, which include exact as well as heuristic
and metaheuristic methods [1, 5, 6, 11, 19, 20].

Exact algorithms are based mostly on the branch and bound method. Sometimes, they may make use of the
principles of duality. Their main disadvantage consists in their capacity limitation caused by commonly
available universal optimization environments, to which the exact methods are embedded. Mentioned
restriction does not usually allow us to solve problems of practical and real world size. On the other hand, there
is a radial formulation of the problem [7, 14], which enables us to overcome this weakness. Other approach
consists in developing a special software tool. Therefore, many Operations Research scientists and other
authors focus mainly on heuristic and metaheuristic approaches [17, 18, 21].

Currently, the main attention is paid to various metaheuristic approaches, i.e. genetic algorithms, scatter search,
path-relinking method and many others, the aim of which can be specified as a task of obtaining a good solution
in acceptably short computational time. In this paper we report our research, which was aimed at extending
the path-relinking method. This approach proved to be suitable mainly in the case of the generalized weighted
p-median problem, in which the demands for service are assumed to occur randomly. It must be noted that the
original path-relinking method inspects only the shortest path between two solutions. The scientific effort
reported in this paper was aimed at suggesting such a version, which could project a starting solution into a
feasible solution, which is the closest one to a given vertex of a unit hypercube regardless of its infeasibility.
The suggested path-relinking projective method was embedded into a simple one-to-all search strategy and its
efficiency depending on infeasibility level of the infeasible solution was studied.

2 Path-relinking method and its applications

The original path-relinking method was suggested to enable heuristic solution of the problems, which can be
described by zero-one mathematical programming tools [8]. A general zero-one programming problem can be
formulated by (1).

min{ £ (x): x0X 0{0,1}"} (1)

The idea of the method consists in searching one of the shortest paths connecting two input feasible solutions
— vertices of an m-dimensional hypercube and returning the best-found-solution, which lies on the path. The
hypercube vertices of the path correspond to m-dimensional vectors, components of which take values of one
or zero. The sequential search along the shortest path is performed by a move from a currently occupied
solution to a neighboring one, which differs from the occupied solution only in a value of one component. In
addition, this component must belong to the set of components, which take different values in the vectors
describing the input solutions. The original path-relinking method proceeds in accordance to the following
algorithm applied to a pair x, y of input solutions — m-dimensional zero-one vectors.

0. Define set D of components, in which x and y differ, i.e. D = {i=1, ..., m: x; # y; }. Initialize x*** by
X" = argmin{f(x), f(y)}.

1.If |D| > 1 go to 2, otherwise go to 3.

2. Determine d//D by d = argmin{f(inv(x, i)): i LD} and perform x = inv(x, d), D = D — {d}.
If x O X then update x***' by x**' = argmin{f(x**), f(x)}.

best

3. Return x***! and terminate.

Comment: The operation inv(x, i) performed with m-dimensional zero-one vector x and subscript i from the
domain 1, ..., m returns vector X, components of which are defined as follows x;=x;fori=1, ..., m,i Zd and
Xa=1-xa

The cardinality |D| of the initial set D corresponds to the Hamming or Manhattan distance of the input solutions
x and y, and |D| - 1 of inner vertices is the number of inner vertices on the shortest path connecting the input
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solutions in the surface of the m-dimensional unit hypercube. Efficiency of the path examination is obviously
influenced by the number of feasible solutions inspected during the examination.

If a kind of p-location problem is considered, e.g. the weighted p-median problem or the emergency service
system design problem with p service centers, then the set X of all feasible solutions is defined by (2).

XZ{XD{O,I}m:ixin} (2

Applying the above original version of the path-relinking method to the p-location problem, it can be found
that at least every second vertex of the examined path will be inadmissible or infeasible solution. It means that
the associated vector x will have less or more than p non-zero components. That is why, a more efficient
version of the path-relinking method was suggested to solve problem (2). The new version avoids the weird
vertices of the hypercube and inspects only feasible solutions of (2).

This adjusted path-relinking mod performs according to the following scheme.

0. Define sets D and E of components, in which take the value of one only in one of the input solutions x
andy.D=1{i=1,...m:x;=landy;=0}and E= {i=1, ..., m: x;=0 and y; = 1}. Initialize x*** by x"*' =
argmin{f(x), y)}.

1. If |D| > 1 go to 2, otherwise go to 3.

2. Determine d//D and e [/E by [d, e] = argmin{f(swap(X, i, j)): [i, j1 /D X E} and perform
x = swap(x, d, e)): D=D — {d}, E = E — {e}, and update x***' = argmin {f(x***), f(x)}. Go to 1.

best

3. Return x***' and terminate.

Comment: The operation swap(X, d, e) performed with m-dimensional zero-one vector x and subscripts d and
e from the domain 1, ..., m, for which x,= 1 and x. =0 returns vector X, components of which are defined as
follows x;=x;fori=1, ..., m, i Zd and i Ze. Furthermore x,= 0 and x. = 1.

The above-described path-relinking method proved to be an excellent tool when embedded into a searching
scheme of a discrete version of particle swarm optimization. Nevertheless, the domain of examined solutions
stays restricted by the initial deployment of swarm particles and the system of shortest paths among them. To
overcome this disadvantage of the method, we suggested an extended version of the path-relinking method
described in the next section.

3 Concept of projection and path-relinking method extension

The idea of extension is based on the m-dimensional unit hypercube geometry, where the set of feasible
solutions (2) corresponds to a sub-set of the hypercube vertices, which lie in the intersection of the hypercube
and a facet of the simplex determined by the constraint in (2).

Let us consider a vertex v of the hypercube, which does not belong to set of feasible solutions due to the
number of its non-zero components exceeds the value of p. The vertex v induces a set F(v) of feasible p-
location problem solutions, which are the closest ones to the vertex v in terms of Hamming distance. As the
vertex v has g non-zero components and g > p, the minimal Hamming distance equals to g — p.

Now, using the path-relinking principle, an input solution x will be projected to the set F(v) and the best-found-
solution of the shortest path from x and the set F(v) will be an output of the procedure. Using the above
introduced denotation, the extended path relinking method can be described by the following algorithm, input
of which is a feasible solution x and an infeasible hypercube vertex v with ¢, ¢ > p components.

ExtendedPathRelinking(x, v)
0.Define D={i=1,...,m:x;=1landv;=0}and E= {i= 1, ..., m: x;= 0 and v; = 1}. Initialize x*** by x.
1. If |D| > 1 go to 2, otherwise return x and terminate.

2. Determine [d, e] LIDXE by [d, e]l=argmin{f(swap(X, i, j)): [i, j1LIDXE} and update
X =swap(x, d, e)): D=D — {d}, E = E — {e}, and x*** = argmin{f(x***), f(x)}. Go to 1.
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This extended path-relinking method can be employed in a simple version of a discrete particle swarm
optimization algorithm [3, 21] with strategy one-to-all as follows.

Let x is a starting feasible solution of the solved p-location problem and V is a finite set of hypercube vertices,
where each of them has more than p non-zero components. Then the searching strategy follows the next
commands:

One-to-allSearch(x, V)

While V # 0 do: Withdraw a v from V, update V =V —{v} and x = ExtendedPathRelinking(x, v). If V = [,
then terminate the search and return x.

4 Numerical experiments

To verify the extended path-relinking method, the medical emergency system design instances were used as
benchmarks. The problem is formulated as a task to choose p centers out of the set of m possible center
locations so that the objective function f is minimal. The collection of p chosen center locations can be
described by an m-dimensional zero-one vector x[1X. Then, (3) can define the objective function f for the
above-described problem. The formula expresses sum of mean distances from a system user j to the nearest
available service center.

f(X) :Zn:bjiqk mink{dl-j:i=1,..., m, X =1} (3)
=

In the formulation (3), the operator mink{} returns the k-th minimal value of the set {}. The function f is
computed for n system users, where b; denotes a number of user’s demands, which are located at j and must
be serviced from the nearest available service center. The time-distance between a user location j and a possible
service center location i is denoted by symbol dj;. The coefficients g, k = 1, ..., r stand for probabilities that
the k-th nearest service center is the closest available one. This problem description corresponds to the concept
of emergency service system design, in which the system operates as a queuing system with p service lines.
The system is characterized by a demand assignment strategy following the idea that a randomly emerged
demand for service is assigned to the nearest service center only if the center is not occupied by an earlier
demand. In the opposite case, the nearest non-occupied center provides the user with service [9, 11, 15].

Computational study reported in this paper was performed on benchmarks derived from real emergency
medical service system implemented in eight self-governing regions of the Slovak Republic. These problem
instances were used also in our previous research published in [10, 11]. The individual instances are denoted
by the names of capitals of the particular regions, which are reported by abbreviations of the region denotations.
The list of instances consists of Bratislava (BA), Banska Bystrica (BB), KoSice (KE), Nitra (NR), PreSov (PO),
Trenéin (TN), Trnava (TT) and Zilina (ZA). The sizes of the individual benchmarks are m and p introduced
above. Mentioned basic characteristics of all used benchmarks are reported in the left part of Table I. The
coefficients b; used in the objective function (3) correspond to the number of inhabitants of individual
communities rounded up to hundreds. The coefficients g« for k=1...3 of the generalized objective function (3)
were set according to [12] at the values: g; = 0,77063, g>= 0,16476 and g3= 1 - g1 - 2. These values were
obtained from a simulation model of existing emergency medical system in Slovakia. The middle part of the
table consists the objective function value (3) of the optimal solution denoted by OptSol together with the
computational time in seconds denoted by CT [s], in which the optimal solution was obtained. The right part
of Table I is devoted to the characteristics of the uniformly deployed sets as described in [10]. We report their
cardinalities [0SO and minimal Hamming distance /. The uniformly deployed sets of solutions were used in
the suggested solving heuristics as a source of feasible solutions of the problem. The process of uniformly
deployed set construction and usage are reported in [10] and [11].
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Table 1 Basic benchmarks characteristics, the optimal objective function values and uniformly deployed sets sizes

. Optimal solution Uniformly deployed set
Region | m |\ p 75 o1 | CT[s] I5] h
BA 87 14 26650 0.35 23 2
BB 515 | 36 44752 10.57 172 3
KE 460 | 32 45588 7.58 60 2
NR 350 | 27 48940 19.21 83 2
PO 664 | 32 56704 76.53 232 2
TN 276 | 21 35275 4.04 137 2
TT 249 18 41338 2.79 212 2
ZA 315 29 42110 2.70 112 3

To construct the series V of the infeasible hypercube vertices for individual benchmarks, we ordered the
corresponding uniformly deployed set S of p-location solutions according to objective function values. We
used the best solution as the initial solution x and then, we grouped the remaining solutions to disjoint pairs,
triples and quadruples. Each created group {x"“: u = 1, ..., t}of ¢ solutions gave one vertex v, components of
which were determined according to v; = max{x;" : u=1, ..., t}. This way we solved four cases, where the first
one did not use the infeasible vertices, but feasible solutions of S. The second case consisted of vertices
obtained from pairs and thus |V| = |S|/2. In the third and fourth case the infeasible vertices were constructed
from triples and quadruples respectively and cardinalities of V equaled to |S|/z for =3, 4.

The main goal of this computational study is to verify the impact of the cardinality of V on the results measured
by computational time in seconds and the solution accuracy. Since the optimal objective function values of all
studied benchmarks are available and published in [11], the quality of the resulting system design is here
evaluated by gap, which expresses a relative difference of the obtained objective function value from the
optimal one. Its value is reported in percentage, where the optimal objective function value was taken as the
base. Obviously, we provide also the computational time CT in seconds.

To achieve the main goal of numerical experiments, a sufficient set of problems and uniformly deployed sets
of solutions must be considered. To make the comparison relevant and robust enough, we followed from a
very useful property of any uniformly deployed set of solutions. The mentioned useful feature consists in the
fact that any arbitrary permutation of m locations subscripts brings a new set with the same parameters. This
way, we were able to obtain ten different sets for each problem instance. The results are summarized in the
following tables.

Table 2 contains the average results of ten instances solved for different uniformly deployed sets of solutions
for each self-governing region.

For completeness, let us add the information that the numerical experiments were run on a PC equipped with
the Intel® Core™ i7 3610QM 2.3 GHz processor and 8 GB of RAM. The algorithms were implemented in the
Java language making use of the NetBeans IDE 8.2 environment.

Table 2 Average results of numerical experiments for the self-governing regions of Slovakia

VI =15] [VI=18]/2 [V]=18]/3 [VI=18]/4
gap CT gap CT gap CT gap CT
BA 1.19 0.19 1.81 0.14 2.32 0.09 297 0.07
BB 030 | 2415 035 | 2460 [ 036 | 21.36 | 0.30 | 18.37
KE 0.37 | 1390 | 037 | 1355 036 | 11.63 | 0.55 9.68
NR 0.18 6.60 1.52 6.18 0.30 5.27 1.67 4.29
PO 045 | 16.17 | 059 | 16.86 [ 4.91 1539 [ 4.89 | 13.96
TN 1.38 2.54 1.51 2.37 1.71 2.10 1.99 1.77
TT 0.23 1.54 0.10 1.43 0.14 1.21 0.12 1.00
ZA 0.07 7.00 0.05 6.55 0.05 5.47 0.05 4.47

Region
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The following Table 3 contains the results of the best run out of ten computations for each benchmark, in
which the lowest value of the objective function (3) was achieved.

Table 3 The best results of numerical experiments for the self-governing regions of Slovakia (minimal objective
function value of ten runs was taken into account)

[V =19] [VI=18]/2 V=]s]/3 [VI=|S] /4
gap CT gap CT gap CT gap CT
BA 0.00 0.19 0.65 0.14 0.68 0.08 1.12 0.06
BB 0.00 | 24.85 | 0.00 | 2637 | 0.00 | 22.71 | 0.00 | 18.80
KE 0.00 | 1436 | 0.00 | 1327 [ 0.00 | 11.59 | 0.00 9.40
NR 0.05 6.56 0.09 6.20 0.05 5.31 0.62 4.32
PO 0.03 | 1593 [ 0.12 | 16.77 | 3.57 | 1517 | 3.57 | 13.73
TN 0.00 2.40 0.14 2.30 0.54 1.96 0.51 1.66
TT 0.00 1.57 0.00 1.43 0.00 1.24 0.00 1.07
ZA 0.00 7.05 0.00 6.55 0.00 5.57 0.00 4.95

Region

5 Conclusions

The main purpose of this paper was to provide the readers with an effective heuristic method for solving middle
and large instances of the weighted p-median problem, which finds its application in many different areas
including medical sphere and many other subfields of location science. To make the solving approach
applicable in a wider range, developed algorithm is able to cope with generalized objective function. The
generalization consists in more service centers, which can provide the service to the system user and not only
the nearest located center needs to be considered.

Suggested method is based on the former path-relinking method. The drawback of the original path-relinking
method consists in its way of processing the pair of input solutions. Mentioned weakness was overcome and
the reported computational results prove that most of the instances were solved either to optimality or the
resulting solution was very near to the optimal one. The novelty of presented original method extension
consists in determination of an infeasible solution of the p-location problem, which corresponds to a hypercube
vertex with more than p-components, and in projection of a starting feasible solution in the set of the feasible
solutions, which are the closest ones to the infeasible solution.

Based on performed numerical experiments we can conclude that we have constructed a very fast and effective
heuristic approach to the p-location problems.

Future research in this scientific field could be concentrated on rules, which would enable to reduce the starting
set of p-location problem solutions.
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Abstract

The path-relinking based strategies have proved to be very powerful tool for designing the emergency service
systems by deploying a given number of service centers in a finite set of possible center locations.
Nevertheless, if the original approach to the emergency service system design is generalized to the case, when
more than one facility can be placed at the same possible center location, the question emerges whether the
generalized version of the path-relinking method is able to keep its former efficiency. It must be taken into
account that the generalized path-relinking method performs its search in nodes of integer lattice of an m-
dimensional simplex instead of in a sub-set of unit hypercube vertices. This generalization may considerably
change characteristics of the path-relinking based searching strategies. This contribution is devoted to studying
and comparing two original particle swarm strategies called the shrinking fence and spider search strategies,
which employ the generalized path-relinking method.

Keywords: Emergency Medical Service System, heuristics, generalized path-relinking method,
discrete PSO strategies

1 Introduction

Applied Informatics belongs to one of the currently fastest developing scientific fields. It deals with creation,
collection, processing, storage, transformation, access and usage of any kind of information in natural and
artificial, general and special systems. Its content aims at the properties and methods of information processing
in terms of their optimal availability and usability. It has purely scientific (theoretical) components that
examine the subject regardless of the application, and application (practical) components that contribute to the
development of services and products. In this paper, we focus on applying the knowledge of Applied
Informatics and programming into the specific family of Operations Research problems. We pay attention to
the problem of designing and optimizing a network of rescue service stations in a middle sized geographical
region [1, 17, 19]. In other words presented research deals with certain type of location problems, for which
suitable heuristics are being developed and studied.

Generally, the locations problems may be divided into two independent groups — they can be either continuous
or discrete. When talking about finding the optimal service center deployment for Emergency Medical Service
(EMS), then we have to consider such a fact, that the service centers cannot be located anywhere due to certain
requirements given by law. Therefore, the problem of finding the optimal locations of EMS stations is usually
formulated as median-type problem, which has been recently studied by many researchers [2, 4, 5, 7, 13, 18].

The simplest median-based model is the weighted p-median problem with a wide spectrum of applications.
Since it belongs to well-known and commonly used optimization models, several authors have analyzed the
possibilities of its fast solving either by exact or approximate and heuristic methods [1, 6, 14].

Under the assumption that the service is not possible to be provided to more than one patient simultaneously
by the same staff, the EMS systems operates as a queuing system. Obviously, when life is directly endangered
or health gets suddenly worse, the rescue service is provided by such a facility, which is the nearest available
one. From this point of view, the concept of so-called generalized disutility can be used [10, 12, 15].
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Furthermore, if we look at an existing EMS system, we can observe that there are more than one facilities and
staff located at some service center locations. Thus, we should consider this feature when a mathematical
model of the problem is being formulated [8]. Of course, such an original model modification makes the
problem more complex and possible usage of common exact and heuristic approaches designed for the median-
type problems is questionable.

Within this paper, we study the path-relinking based strategies, which have proved to be very powerful tool
for designing the emergency service systems by deploying a given number of service centers in a finite set of
possible center locations. The main goal of presented research consists in answering the question whether the
generalized version of the path-relinking method is able to keep its former efficiency. It must be taken into
account that the generalized path-relinking method performs its search in nodes of integer lattice of an m-
dimensional simplex instead of exploring a sub-set of unit hypercube vertices. This generalization may
considerably change characteristics of the path-relinking based searching strategies. Therefore, we concentrate
on two original Particle Swarm Optimization (PSO) strategies called the shrinking fence and spider search
strategies, which employ the generalized path-relinking method [11, 16]. To study suggested heuristic
approaches, a computational study with real world middle-sized problem instances was performed and the
obtained results are reported in a separate section.

2  Generalized p-facility location problem and path-relinking search

The generalized p-facility location problem is formulated as a task to deploy p facilities in m network nodes
so that the mean distance between a user and the nearest available facility is minimal. It is assumed that the
system of facilities services demands of n users located also at nodes of the transportation network. A user j
generates his demand randomly with frequency b;. As the system processes the demands for service similarly
to a queuing system equipped with p service lines, a current demand is assigned to the nearest available facility,
which need not be the closest one. For each user location, r nearest facilities is taken into account for the
demand satisfaction and a sequence ¢, ..., g-probability values is considered, where gy is probability that the
k-th nearest facility to the user is the first available one. Unlike the previous approaches, here we admit that
more than one facility can be located in one node of the network. Assuming that d; denotes the network
distance between network nodes i and j the generalized p-facility location problem can be described by the
following integer programming model, in which a series of integer location variables x; J Z* will be introduced

for each i= 1, ..., m, to model the number of facilities located at the node i.. The value of variable y; gives the
number of facilities located at location i. In addition, a series of allocation variables w[1{0, 1} will be
introduced fori=1, ...,m,j=1, ...,nand k = 1, ..., r, where wyr = 1 if user demand emerged at j is assigned
to a service node i for the k-th nearest facility.
Minimize ) b,y q, > d;w; (1)
j=l k=l =l
Subject to le. =p 2)
i=1

sz‘jk =1 for j=1,...,m k=1,.,r 3

i=l1
Zwl.jk Sx, for j=1,.,ni=1..,m “4)

k=1
x,0Z% for i=1,...,m (5)
Wi 0{o,1} fori=1,...,m, j=1,...,nk=1,..,r (6)

The formula (1) expresses the sum of mean distances from users’ locations to the nearest available facility
location. As the sequence of {gx} is decreasing, a demand of a user’s location j is assigned to the nearest facility
location i for k£ = 1. Similarly, the demand will be assigned to the second nearest facility for the case k = 2, etc.
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Constraint (2) determines the number of deployed facilities. Series of constraints (3) ensures that demand at
location j can be allocated to exactly one facility for the case k. This means that the k-th nearest facility is the
first available one. Series of constraints (4) enables to assign a demand at user’s location j to a possible service
node i at most x; times.

The problem (1)-(6) is more complex than the case, when only one facility can be located at a service node.
The study reported in [8] has showed that computational time necessary to solve the problem (1)-(6) to
optimality using an IP-solver exceeded an acceptable limit. This finding approves usage of a heuristic
approaches to the problem solution. We were inspired by discrete particle swarm optimization algorithms [3,
20], which proved to be an efficient tool for this kind of p-location problem, but without the possibility to place
more than one facility at the same service node.

The mentioned algorithms [11, 16] called the shrinking fence and the spider search are based on systematic
examination of a series of the shortest paths connecting pairs of feasible hypercube vertices in a surface of the
unit hypercube. To be able to use the above mentioned searching strategies for heuristic solution of the problem
(1)-(6), we suggested a new version of the path-relinking method, which is able to examine the shortest path
between two nodes of a unit lattice of an m-dimensional simplex.

A feasible solution of (1)-(6) is described by an m-dimensional vector x with integer non-negative components,
sum of which equals to p. The shortest path between two feasible solutions has a length, which equals to
Manhattan distance of the two vectors. The suggested path-relinking method proceeds according to the
following steps.

FacetPathRelinking(Xx, y)
0. Initialize x"* = argmin{f(x), f(y)}. Define sets M™ and M ~ of component indices by prescriptions M* =
{i=1,....mxi<y}and M ={i=1, ..., m: xi> yi}.

res

1. If p(x, y) > 2 perform step 2, otherwise return x** and terminate.

2. Find [u, v] O M™ x M ~ using the definition

[u, v] = argmin{f(exchange(X, i, j)): [i, j] 0 M* x M~} and perform operations

x = exchange(X, u, v)); if xu = yu, then M* = M" - {u}; if x, = y,, then M " =M ~ - {v}; X" = argmin{f(x"®),
fx)}.

Having performed the above adjustments, exchange x with y and M* with M ~ and go to step 1.

Comments: In the above algorithm, p(x, y) denotes the Manhattan distance of x and y defined by (7).
px.y) = 1% =yl ™
i=1

The operation exchange(x, u, v) for u [0 M* and v 0 M~ issues the vector x, components of which are defined
by the following substitutions x;=x; for i=1, ..., m, i#u, i#v and x,=x.+1, x, = x, -1.

The value of function f(x) for a given x is computed according to (1)-(6) after fixing the values of x; fori =1,
ey M

The algorithm FacetPathRelinking(x, y) examines the shortest path connecting integer points x and y in an m-
1 dimensional facet of simplex determined by (2) and (5). The value p(x, y) is obviously even integer and
every performance of the step 2 reduces this distance by two. Thanks to the exchange x and y at the end of
step 2, the algorithm constructs and examines the path alternately from the both ends.

3 Particle swarm strategies based on path-relinking method

Principles of the further applied strategies were obtained from [11, 16] and adapted for the search in the set of
feasible solutions of the problem (1)-(6) using the above suggested version of the path-relinking method. The
both proposed algorithms start with an initial swarm S of input solutions-particles and use the path-relinking
method as a function FacetParthRelinking(X, y), which returns the best-found-solution in the examined path.
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The shrinking fence algorithm imitates building and maintaining a fence, which surrounds a herd of solutions.
At the beginning, posts of the fence are represented by known solutions of the initial set S. The order of posts
in the fence is given by ordering of the associated solutions according their objective function values. It is
assumed that the neighboring posts are connected by fence parts. During the optimization process, the
individual fence parts are examined, a new, better position of a post is found and the new post replaces one of
the neighboring posts. If one of the neighboring posts is closer to the new one more than a given distance, then
the unnecessary post is removed. The best-found solution obtained by the inspections of fence parts is output
of the algorithm.

The shrinking fence algorithm follows.
0. {Building up phase}

Order the solutions of input swarm S increasingly by their objective function values. This way, create a
sequence s°, ..., s’'!. Initialize the best-found solution x"** = s° and the set of new posts S by empty set .

1. {Maintenance phase}

For t=|S]-1, ..., 1, inspect the fence part connecting the posts s'and s"’/ and define the new post position x™"
by X"V = FacetPathRelinking(s', s""). If p(s’, x™%) < d™", then put S = SO{ x™" }. Replace the best-found
solution by X"t = argmin { fxP*), (x"")}.

Inspect the fence part connecting s° and s/ by x" = FacetPathRelinking(s®, s¥*).
If p(s’, x™¥) <d™™", then put S = SO{ x™" }. Replace the best-found solution by x"*** = argmin {f(x**"),
S}

{Improving process controlling}

If the termination condition is fulfilled, then terminate and return x"*. Otherwise, update S = S, reorder the
elements of S according to increasing objective function values and put § = . Go to step 1.

Comment: The termination condition consists of two clauses. The process is terminated whenever the number
of updates of the set S reaches the limit maxPop or if the expended computational time exceeds the threshold
maxTime.

The next presented heuristic called the spider search is evoked by spider’s web creation, which starts with
linking fixed points with a center of the web by spider’s thread and subsequent linking of the neighboring fixed
points. Then some inner web nodes are established and the linking process to web center and then the mutual
connections of the neighboring web nodes continue up to the moment, when the web is dense enough.

0. Initialize the starting swarm by a set S and order the solutions increasingly according to their objective
function values into the sequence s°, ..., s®"!. Initialize the best-found solution xceer = g°,

1. Process the swarm { s°, ..., s*"'} and web center x°®"" in the following way: Update the web center by
XM = gremin{f{FacetPathRelinking(x*™, s)): t = 1, ..., |S|-1} and insert the final x*™*" into the
new swarm. For 7 =1, ..., |§|-1, determine X = FacetPathRelinking (s', s'’) and if there is no identical
solution, insert X  into the new swarm, otherwise skip the insertion. Finally perform Xx'=
FacetPathRelinking (s, s®') and add x" to the new swarm.

2. If the termination condition is fulfilled, then the solving process finishes with the output defined by the
best-found solution. Otherwise reorder new swarm, determine new web center X" and go to step 1.

Comment: The termination condition consists of two clauses. The process is terminated whenever the number
of the swarm updates reaches the limit maxPop or if the expended computational time exceeds the threshold
maxTime.

4 Computational experiments

The main goal of performed computational study was to verify the efficiency of suggested discrete PSO
strategies for search in unit lattice of m-dimensional simplex. Note that mentioned heuristics were originally
developed and designed for a simple version of the weighted p-median problem [11, 16]. Therefore, their
quality characteristics may change when the original model gets a more general form (1)-(6).
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The numerical experiments reported in this paper were performed on a notebook equipped with the Intel®
Core™ {7 3610QM 2.3 GHz processor and 8 GB of memory. The presented algorithms were implemented in
the Java language making use of the NetBeans IDE 8.2 environment.

As far as the problem instances used in this computational study are concerned, they originate from real EMS
system, which is operated in eight regions of Slovakia. The problem instances were used also in our previous
research activities, the results of which are available in [9, 10, 11, 16] and in many others. The cardinalities of
the set of possible service center locations and the set of system users vary from 87 to 664 locations. The
organization of the Slovak self-governing regions is depicted in Figure 1.

PreSov
(PO)

Kosice
(KE)

Banska Bystrica
(8B)

Figure 1 Used benchmarks — self-governing regions of Slovakia.

The parameters of individual benchmarks are summarized in the following Table L. in which also the exact
solutions taken from another research [8] are reported. The coefficients g, kK = 1, ..., r for r=3 stand for
probabilities that the k-th nearest service center is the closest available one. The values of these coefficients
were set so that g; = 0,77063, g>=0,16476 and g3=1 - q; - g>. These values were obtained from a simulation
model of existing EMS system in Slovakia published in [12].

The first four columns of Table 1 contain the basic characteristics of used problem instances. Column
denotations keep the same meaning as used in the model (1)-(6). The last column of the table denoted by
OptObjF is used to report the objective function value of the exact optimal solution of the model (1)-(6), which
was computed in previous research reported in [8].

Table 1 Basic benchmarks characteristics and the optimal objective function values

Region m n p | OptObjF

BA 87 87 25 18450
BB 515 | 515 | 46 38008
KE 460 | 460 | 38 40711
NR 350 | 350 | 36 40987
PO 664 | 664 | 44 46884
TN 276 | 276 | 26 31260
TT 249 1249 | 22 36401
ZA 315 | 315 | 36 36929

An individual experiment was organized so that both compared PSO strategies, i.e. the shrinking fence and the
spider search employing the generalized path-relinking method were applied to obtain the result of the problem
described by the mathematical model (1)-(6). Since the optimal objective function value is available, the
suggested algorithms can be compared from the viewpoint of solution accuracy.

Before reporting the achieved results, it must be noted that the basic idea of both solving approaches follows
from the fact that the individual strategy starts from a set of feasible solutions, which can be provided by so-
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called uniformly deployed set. This set can be constructed independently on the solved instance. The process
of a uniformly deployed set construction is reported in [9] and its possible usage can be found for example in
[10, 11, 16]. The common property of a uniformly deployed set is that an arbitrary permutation of the locations
generates a new uniformly deployed set with the same characteristics. We used this property to obtain ten
different starting sets for each self-governing region presented in Table 1 and the values plotted in further
Table 2 were obtained by averaging ten problem instances. The original uniformly deployed sets of zero-one
solutions obtained from [9, 10] were adjusted by a greedy process to include some initial solutions outside the
unit m-dimensional hypercube. Both suggested methods were run for stopping rule parameters maxPop = 8
and maxTime = 120 seconds.

The following Table 2 contains the average results. The structure of the table is formed by two parts — separate
for each studied PSO strategy. For each heuristic approach we report the objective function value ObjF and
the computational time CT in seconds.

Table 2 Comparison of discrete PSO strategies for the generalized weighted p-median problem — average results of ten
runs with different uniformly deployed sets of solutions

Shrinking fence Spider search

ObjF CcT ObjF CT

BA 18751 1.12 18730 2.84

BB 39924 | 147.68 | 38094 | 211.21
KE 40711 92.46 40715 | 139.55
NR 41062 30.57 41062 | 58.59
PO 56416 | 124.73 | 47005 | 132.21
TN 31568 16.19 31540 | 37.28
TT 36768 10.44 36750 | 21.77
ZA 37030 27.81 37028 | 51.95

Region

For completeness of reported results, we provide the readers with one additional Table 3, which contains the
detailed results for the self-governing region of Zilina. Table 3 has the same structure as the former Table 2.

Table 3 Comparison of discrete PSO strategies for the generalized weighted p-median problem —results of ten runs with
different uniformly deployed sets of solutions for the self-governing region of Zilina

Run Shrinking fence Spider search

ObjF CT ObjF CT
1 36929 | 28.32 | 36929 | 51.68
2 36929 | 28.28 | 36929 | 53.34
3 36929 | 2791 | 36929 | 51.86
4 37848 | 27.58 | 37828 | 52.78
5 36929 | 27.74 | 36929 | 51.25
6 36929 | 28.00 | 36929 | 53.00
7 36929 | 27.69 | 36929 | 50.36
8 36993 | 27.44 | 36993 | 52.35
9 36929 | 27.63 | 36929 | 51.46
10 36964 | 27.46 | 36964 | 51.37

All reported results indicate that the quality of obtained results is very satisfactory. From the point of solution
accuracy, the strategy of a spider search seems better, because the average gap from the optimal objective
function value achieves only the value of 0.54% while the first studied shrinking fence strategy brings worse
results. As far as the computational time is concerned, both strategies can achieve the result in acceptably short
time and can be used to solve practical real world problems.
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5 Conclusions

This contribution was focused on two strategies employing the path-relinking method. The main research goal
was aimed at the finding, whether the adjusted shrinking fence and spider search strategies are able to prove
the same efficiency as their simple original versions when used for the p-location problem solution subject to
the assumption that more than one facility can be located at the same possible service center location.

Suggested methods are based on the path-relinking method and they make use of previously developed search
strategies. The novelty of presented original method extension consists in adjusting the heuristics for different
space, in which the solutions are being explored. It must be realized that the mathematical problem formulation,
to which the suggested heuristics were adjusted, makes use of the concept of generalized disutility, which
assumes, that the service does not have to be provided by the nearest located service center, because it may be
temporarily unavailable. In such a case, the request for rescue service is assigned to the nearest available center.
The second modification of the original model consists in significant variables definition scope extension. It
means that more than one facilities are allowed to be located in the same possible service center locations. This
way, the former binary decision variables change into integers, what can make many available solving tool
necessary to be adjusted or rebuilt.

The reported results of numerical experiments aimed at heuristic solving techniques for the multiple p-facility
location problems with the generalized objective function show that the suggested strategies keep their useful
features and both of them can be used for effective solving middle-sized problem instances. The accuracy of
the resulting solution is satisfactory and the resulting system design can be obtained in acceptably short
computational time. Based on performed numerical experiments we can conclude that we have constructed a
very fast and effective heuristic approach to the generalized p-location problems.

Future research in this scientific field could be concentrated on rules, which would enable to reduce the starting
set of p-location problem solutions and on developing other search strategies, which could improve the studied
characteristic of the heuristic solving approach.
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Abstract. This paper focuses on a capacitated multi depot vehicle routing problem, where
each depot has a finite supply capacity to meet the customers demand. To solve this prob-
lem we propose a multi phase methodology, that extends the “cluster first, route second”
approach. It is based on iterative routings to find and reassign misplaced customers with re-
spect to the depots and with the objective of improving the final routing. Several assignment
and routing algorithms are considered to evaluate the proposed methodology under different
settings. A mathematical model of the problem is given to perform a comparative study of
the methodology against an exact solution method. The results obtained from the numeri-
cal experiments carried out allow us to conclude that the methodology can be successfully
applied to the capacitated multi depot vehicle routing problem.

Keywords: multi depot vehicle routing problem, heuristics, supply capacity, clustering, as-
signment

1 Introduction and related works

We address the problem of distribution of goods from several depots to a set of geographically
dispersed customers with known coordinates and demand, assuming finite supply capacity at each
depot and an unlimited fleet of homogeneous and capacitated vehicles. We refer to this problem as
the Capacitated Multi-Depot Vehicle Routing Problem (CMDVRP). The objective is to determine
a set of routes starting and ending at each depot, minimizing the total distance traveled and
subject to the supply capacity of each depot and the capacities of the vehicles. The CMDVRP
can be found in recent real life applications such as emergency facilities location-routing and city
logistics problems [20,22]. The CMDVRP is an NP-hard problem since it can be considered an
extension of the Multi-Depot Vehicle Routing Problem (MDVRP), which in turn is an extension
of the classical Vehicle Routing Problem (VRP) [8].

We present here a novel multi phase methodology to solve the CMDVRP inspired by the
“cluster first, route second” approach. The initial phase consists of the assignment of costumers
to depots and the final phase produces the routing of the VRPs related to all depots. Between
these two phases, there is an intermediate phase for the reassignment of customers to depots
with the aim to obtain a high quality solution in the cluster first part, improving in this way the
final routing phase. The detection and reassignment of customers are based on a combination of
misplaced-customer criterion and routing algorithm. A misplaced customer is reassigned to another
depot, if this reassignment improves the cost of the general solution, which is the objective of the
proposed methodology. The main idea behind the proposed methodology is that the complexity
of the algorithms used in each phase can be chosen by the decision makers according to their
needs and possibilities. The strength of the methodology is to provide good quality solutions in
reasonable times, even in the case of using simple algorithms (easy to understand and code).

As far as we know, only few authors focus on the CMDVRP, and in particular, by means of
the “cluster first, route second” approach. Giosa et al. [9] describe and compare several assignment
algorithms for the clustering phase. Tansini et al. [17] compare the results obtained by a set of
heuristic algorithms for the assignment of customers to depots with assignments obtained from
solving the Transport Problem. Six heuristics for the clustering problem (assignment of customers
to depots) are presented and analyzed in [10]. Also [18] consider this approach for the real-life
problem of milk collection. Allahyari et al. [1] tackle the CMDVRP extension in which every
customer is satisfied either by visiting the customer or by being located within an acceptable
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distance from at least one visited customer. Calvet et al. [4] consider the CMDVRP for the case of
customers with stochastic demand and supply constraints on the depots due to the limited number
of capacitated vehicles assigned to each of them. A collaborative routing problem with shared
carriers and multiple depots (wholesalers) with limited storage is tackled in [21].

We note that many authors have considered the multi-depot vehicle routing problem with
limited capacity on vehicles and/or route lengths, but not on the supply depots. For instance,
Vidal et al. [19] propose a framework to solve the MDVRP, the Periodic VRP (PVRP), and the
multi-depot periodic VRP with capacitated vehicles and constrained route duration. Contardo
and Martinelli [6] suggest an exact algorithm for the MDVRP under capacity and route length
constraints, exploiting the vehicle-flow and set-partitioning formulations. Recently, Pessoa et al.
[15] propose a generic branch-cut-and-price solver for different vehicle routing variants and related
problems.

The remainder of this paper is organized as follows. In Section 2 we introduce the mathe-
matical formulation for the CMDVRP. The proposed methodology for solving the CMDVRP is
further described in Section 3. In Section 4 we present the results of the comparison between the
methodology against exact methods and we also analyze the effectiveness of the exploration phase
of the methodology. Finally, in Section 5, we provide the conclusions and some directions for future
research.

2 The Capacitated Multi-Depot Vehicle Routing Problem (CMDVRP)

The CMDVRP can be formally described as follows, extending that presented in [14] for the
MDVRP. Let G = (V, E) be a directed graph, where V' denotes the set of nodes {1,...,n} and
E CV xV the set of arcs. Let D be the set of depot nodes {1, ...,m}, with 1 <m < n, and U the
set of customer nodes {(m + 1), ...,n}. For each node ¢ € V there is a related quantity ¢; > 0 that
represents either the supply capacity for nodes ¢ € D or the demand requirements in the case of
nodes i € U. For each arc (4, j) € E there is a routing cost ¢; ; > 0. Let also consider the set of the
possible routes R = {1,...,(n —m)}. A route r can be defined as either the empty set or a finite
sequence of at least three elements of V' satisfying the following conditions: 1) in the extremes there
is the same node 7, with ¢ € D, 2) the internal nodes are customers nodes j with j € U, and 3) for
any pair of nodes j, k € U, we have that j # k. We assume that for each route r there is a vehicle
of capacity p > 0. Then, the objective is to determine the set of routes r in R in order to fulfill
the demand of each customer without exceeding the vehicle and depot capacities, minimizing the
total cost of routing. To formulate the CMDVRP as a Mixed Integer Linear Programming (MILP)
we define the binary variables z;;i, to be equal to 1 only if the arc (4, ) is in the route r of the
depot k; 0 otherwise. Thus, the MILP proposed for the CMDVRP is as follows:

minz Z Z Z Cij Tijkr (1)
i€V jeV k€D reR
subject to:

S wipe =1, VieU (2)

jeEVkeDreR

> Tige= Y Tji, Vi€V,VkeDVreR (3)
jev\{i} jev\{i}

Z Z Z Gi%ijer < D, VreR (4)

iU jeV\{i} keD

S>> Y g <@, VkeD (5)

icU jeVv\{i} r€R

Zxk.jk,. <1, Vke D,Vr € R (6)
Jjeu
qukrzov VZ,kED,Z#k,V'I"ER (7)
Jjeu
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yi—yi+t(n=m) > Y @i <n—m—1, Vi jeUi#j (8)
keDreRr

yi > 0, VieU (9)

Zijer € {0, 1}, Vi,j € V,Yk € D,Vr € R (10)

The objective function (1) is the minimization of the total cost of distance traveled. Constraints
(2) state that each customer is included in a single route. Constraints (3) are for the route continuity.
Constraints (4) and (5) represent the vehicle and depot capacity, respectively. Constraints (6) and
(7) state that one route is assigned at most to a single depot. In (8) are the constraints of Miller-
Tucker-Zemlin for subtours elimination [3]. Finally, constraints (9) and (10) are for the domain of
values of the decision variables.

Although the main difference between CMDVRP and MDVRP are the constraints of (5), we
note that, in general, a more restricted problem is more difficult to solve.

3 Multi-Phase Methodology for the CMDVRP

It is worth to note that the assignment problem and the routing problem in the “cluster first, route
second” approach are not independent from each other. A bad assignment solution will result in
routes of higher total cost, even if an effective routing algorithm is used. Motivated by this, we
consider an improvement to this approach, by means of a multi-phase methodology (MPM) for
solving the CMDVRP. It begins from an initial assignment of costumers to depots and in the
final phase produces the routing of the VRPs related to all depots. We introduce an intermediate
phase in which misplaced costumers are detected and may be reassigned to another depot, if it
improves the cost of the overall solution. Successive reassignment of misplaced costumers, based on
the routing, will in most cases lead to an improvement of the solution. An outline of the proposed
methodology for the CMDVRP is as follows:

1. Assignment phase: choose and apply an assignment algorithm of customers to depots taking
into account demand and supply restrictions. The choice may depend on computational time
and other restrictions.

2. Exploration phase: choose and apply a routing algorithm for all VRPs related to the depots.
Again, the choice may depend on computational time and other restrictions. Then, repeat until
no further improvement can be achieved:

(a) Detect misplaced customers based on the current assignment and eventually other restric-
tions.

(b) Reassign misplaced customers and run the selected routing algorithm. Accept the reassign-
ment if it improves the cost of the overall solution.

3. Final routing phase: choose and apply the final routing algorithm for all VRPs related to
the depots.

One of the advantages of the suggested MPM is that each phase offers the possibility of choos-
ing different algorithms depending on the specific characteristics of the problem, the problem
instances, hardware limitations, time restrictions, etc. They can be exchanged and combined in
different manners. Thus, a specific selection of algorithms for each phase produces a particular
MPM instantiation that can be considered a heuristic procedure to solve the CMDVRP. Next the
MPM phases are explained in more detail and some algorithms that can be used in each one are
mentioned.

3.1 Assignment phase

Since each phase of the methodology offers a great variety of possibilities to instantiate and since
there are several known methods that can be used to obtain an initial assignment of customers, in
this work we narrow down the study to two assignment schemes.
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We use the urgency assignment (Ur) which is a simple and fast assignment method that con-
siders an urgency value p. for each customer ¢ that determines the order in which customers are
assigned to depots with limited supply capacity [9], as follows:

fe = [ Z dist(c, d)} — dist(c,d") (11)

deD

where dist(c,d) is the distance of customer ¢ to depot d, and dist(c,d’) is the distance to the
closest depot d’. This measure accounts for the cost of assigning a customer to a depot other
than its closest depot. Customers with more urgency (higher p. value) will be assigned first. Once
a depot is complete it will no longer be considered for the further assignments and will hence
not participate in the urgency calculations. Note that after each assignment the urgency of some
customers must be recalculated.

Alternatively in this study the modified urgency assignment (MUr) is used as another as-
signment method and is defined as the combination of the urgency assignment [9] and the cluster
assignment [10]. Customers are assigned to depots with the same criterion as in the urgency assign-
ment until a fraction of them have been assigned (in this case 1/4) and then finalizes by assigning
customers to the closest cluster made up of each depot and the already assigned customers, where
it is feasible to assign the customer, i.e. will not exceed the total capacity of the depot.

There are other interesting assignment algorithms that could be explored such as the sweep
approach [11] or using a grid or Voronoi diagrams [2]. We note that some of them do not consider
the capacity of the depots and may require an adaptation or post-processing in order to give an
acceptable initial assignment.

3.2 Exploration phase

The exploration phase is the keystone of the proposed methodology. It is characterized by: 1)
the definition of misplaced customers; 2) the processing order of the misplaced customers; 3) the
routing algorithm used iteratively; 4) the criterion that determines if each misplaced customer
should be reassigned or not; and 5) the reassignment strategy. In the following sections we describe
the definitions and algorithms to be used in our study for this phase.

Definition of misplaced customers: Here, the definition of misplaced customers, the processing
order of the misplaced customers, and the criterion that determines if each misplaced customer
should be reassigned or not, all of them depend on the routing algorithm that is used iteratively
to obtain the results of the VRPs related to all depots.

It is possible to infer that different definitions of misplaced customers lead to different ways
of exploring neighboring solutions. The first approach was to define misplaced customers as those
whose two closest customers are assigned to another depot. In general, we can define a misplaced
customer as that for which its n closest customers are assigned to other depots (possibly different),
for certain positive integer n > 0. Thus, a more flexible definition considers a customer to be
misplaced if considering its n closest customers, m of them are assigned to other depots, where
m < n. Observe that this definition focuses on the cost of the solution, therefore the reassignment
strategy considers the supply capacity of the depots.

Other approaches would be to consider constraints such as capacity and time windows in the
definition of misplaced customers.

Processing order of the misplaced customers: In this work, misplaced customers are pro-
cessed in descending order of the following misplaced criterion:

e = dist(c,d) — [idist(e, cl)} (12)

where customer ¢ has been assigned to the depot d and ¢, ...,cy are its N closest customers not
assigned to d, but assigned all to the same depot. The value of . can be positive or negative,
where a high positive value of ¢, means that the customer c is very far from the assigned depot
compared to the distance to its closest neighbors.
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Routing algorithm used iteratively: Three different algorithms for the routing of the customers
assigned to each depot were tested in this paper for the Exploration phase: Clarke & Wright
algorithm [5], Sweep [11] and JSprit (available at https://jsprit.github.io/) which is a metaheuristic
defined by the ruin-and-recreate principle [16]. It is a highly optimized method that consists of a
large neighborhood search that combines elements of simulated annealing and threshold-accepting
algorithms. Both Clarke & Wright and Sweep are classical and simple routing algorithms for
the VRP, and also Clarke & Wright is a very popular constructive heuristic [12] and Sweep is
the most elementary version of petal-type constructive heuristics [12]. It is worth noting that in
each iteration, the routing algorithm only needs to bee applied for those depots with reassigned
customers, since the others remain unchanged.

Reassignment criterion: The reassignment criterion used in this paper is to reassign a customer
if it produces a lower routing cost than the current assignment. It is important to note that once
the reassignments are decided, it is only necessary to run the routing algorithm for the implicated
depots. The routing for the rest of the depots remains unchanged.

Reassignment strategy: Different approaches can be considered for the reassignment strategy.
They should describe the conditions and the procedure to assign a misplaced customer to another
depot, that will potentially improve the final routing. In general, the demand of customers and the
capacities of depots should be considered. In this paper the reassignment strategy is determined
by a two-stage procedure executed over an ordered list of misplaced customers. As part of the
strategy, it has to be decided the number m of customers with the same target depot that may be
considered to be reassigned simultaneously. This section explains the strategy suggested to reassign
one misplaced customer (m = 1) at a time in the exploration phase.

In the first stage, the reassignment of a misplaced customer ¢ to the depot d’ of the closest
customer 7’ is attempted, if d’ has enough spare capacity to serve costumer 4. If the reassignment
produces a better overall routing result, it is accepted and the list of misplaced customers is
recalculated. If there is no improvement, the next misplaced customer in order of misplaced criterion
is considered to be reassigned. If depot d’ does not have enough spare capacity to serve costumer
i, then ¢ is reassigned to the closest depot d” (if it exists) that does have enough spare capacity
to serve it. Again, if the reassignment produces a better overall routing result, the reassignment is
accepted and the list of misplaced customers is recalculated.

The aim of the second stage is to try reassign the misplaced customers that remain in the list
after the first stage. In this stage the same processing is done with the misplaced customers as in
the previous stage except in the way of determining the alternative depot d” and the reassignment
moves. Let us assume that depot d’ does not have enough spare capacity to serve the misplaced
customer 7 under consideration, with d’ as in the first stage. Then, a misplaced customer 7" assigned
to d’ is determined, that could potentially be reassigned to another depot d’, with d” the depot
of the closest customer to ", allowing d’ to serve the customer 4. If misplaced customer " exists,
a double reassignment is attempted by means of assigning " to depot d” and i to depot d’'. If
the double reassignment of customers produces a better overall routing result, the reassignment is
accepted and the list of misplaced customers is recalculated.

The two stages described above, are repeated until there are no further misplaced customers
(the list is empty) or no misplaced customer reassignment results in a cost improvement.

In the case of at least two misplaced customers (m > 2) being reassigned together, the procedure
is similar but the destination depot has to have enough spare capacity to serve the set of misplaced
customers under consideration.

3.3 Final routing phase

Several routing algorithms can be used to produce the final routing once the Exploration phase
has finished. In this work the same three algorithms used in the Exploration phase were tested for
the Final routing phase.
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4 Evaluation of the proposed methodology

In this section we provide the results obtained from different numerical experiments of several
MPM instantiations. Given the reasonable computational time observed for the MPM methodology,
we performed all experiments with all combinations of assignment and routing algorithms for
the phases of the methodology (assignment, exploration and final routing phases). The MPM
instantiation with the best result obtained is shown in the tables (in the case of equal cost the one
with the fastest time is chosen).

The mathematical model for the CMDVRP presented in Section 2 was coded in AMPL and
solved with CPLEX 12.6.3.0 on a PC Intel Core i7, 16 CPUs, 64 GB of RAM (DDR4) and CentOS
7. The MPM instantiations were coded in Java and executed in a PC with Intel Xeon CPU E3-1220
V2, 4GB of RAM and Windows 7.

4.1 Comparative study with exact method

Solving the CMDVRP to optimality is extremely costly due to the computational complexity of the
problem. Nevertheless, an important aspect of a comprehensive analysis for any proposed heuristic
approach is to compare its results against exact methods both regarding objective values and
running times.

In https://www.fing.edu.uy/owncloud/index.php/s/XnvURwxKzQUaHI1P it is available the
benchmark set of instances used to compare different MPM instantiations against CPLEX. Table
1 presents the results obtained.

The first column of Table 1 provides the identification of the instances, with 20 nodes in total,
2 or 3 depots, and a sequential number. The capacity of each depot is in the range [66,125], and
the vehicle capacity in the range [50,70]. The sum of the customers demand is of 180 units for
each instance. We note that the distribution of the customers and depots is based on real map
coordinates on certain islands of the Pacific ocean. Columns 2 to 4 report the name of the MPM
instantiation, the costs and the total running times (in seconds) of all phases of the methodology
for each one of the instances in the benchmark set. The name of each MPM instantiation is
composed by four terms separated by a simple dash: the assignment algorithm (Ur or MUr), the
criterion for misplaced customers and the routing algorithms used for the exploration and final
phases, respectively. For example, a misplaced criterion 5cln2m means that 5 closest customers
are considered for determining if certain customer is misplaced, at least 1 of them is assigned to
another depot, and 2 can be reassigned simultaneously. For all the experiments performed, we
consider 1 to 5 closest customers for the misplaced criterion and between 1 or 2 customers to be
reassigned simultaneously. The algorithms used in each phase and the misplaced criteria of the
MPM instantations listed in Table 1 were those for which we obtained the best results in the
experiments. Columns 5 reports the cost obtained from CPLEX with a running time limited to
3600 seconds (no significant improvements were noticed with higher running times). Last column
6 in Table 1 provides the percentage gap between the cost of the MPM instantiation and CPLEX,
calculated as 100 * (M PMc¢ost — CPLE X cost)/CPLEX cost.

From the results in Table 1 we note that MPM outperforms CPLEX in 6 of the 15 instances,
and achieves the same objective value in the remaining ones. Thus, we can conclude that MPM is
competitive with CPLEX because the gap error is always negative or zero and the running times
of all the considered MPM instantiations are significantly lower than CPLEX (less than 60 seconds
versus 3600 seconds). We also want to note that the most effective MPM instantiation considering
both, costs and running times, is Ur-1c1nlm-C&W-JSprit, since it shows the two lowest percentage
cost gaps and less than a half of a second of running time. This MPM instantation makes use of
different algorithm approaches for the exploration and final routing phases. This seems to indicate
that it would be enough to use a simple and fast algorithm for the exploration phase, and a good
and eventually time consuming routing algorithm for the final phase.

4.2 Comparative study with and without exploration phase

A central part of the proposed methodology, is the intermediate exploration phase for the detection
of misplaced customers and the reassignment of them to depots using a routing algorithm. In this
section we analyze the impact of including the exploration phase in the methodology by means of
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Table 1. Comparison of results for MPM instantiations against CPLEX.

Instance MPM Instantation Time  Cost CPLEX Cost % Gap cost

20n2d01 MUr-5¢1n2m-JSprit-JSprit  58.79 3064.9 3085.83 -0.68
20n2d02 Ur-5c1n2m-JSprit-JSprit  24.757 5726.34 5726.34 0.00
20n2d03 Ur-5¢1n2m-JSprit-JSprit  22.591 224.18 229.92 -2.50
20n2d04 Ur-1clnlm-Sweep-C&W 0.001 158.03 158.03 0.00
20n2d05 Ur-5¢1n2m-JSprit-JSprit  45.336 354.39 361.26 -1.90
20n2d06 Ur-5cln2m-Sweep-JSprit 0.266 5808.51 5808.51 0.00
20n2d07 MUr-5¢1n2m-JSprit-JSprit 11.337 5873.72 5873.71 0.00
20n2d08 Ur-5¢1n2m-JSprit-JSprit  37.826 5062.75 5062.75 0.00
20n2d09 Ur-5c1n2m-Sweep-JSprit 0.298 910.97 924.15 -1.43
20n2d10 Ur-1clnlm-Sweep-C&W 0.001 292.26 292.26 0.00
20n3d01 Ur-1lclnlm-C&W-JSprit 0.354 2556.36 2726.02 -6.22
20n3d02 Ur-5c¢1n2m-Sweep-JSprit ~ 0.248 159.84 159.84 0.00
20n3d03 Ur-1clnlm-C&W-JSprit 0.329 123.98 123.98 0.00
20n3d04 Ur-1clnlm-C&W-JSprit 0.354 4773.08 4973.73 -4.03
20n3d05 Ur-1clnlm-C&W-JSprit 0.347 4576.78 4576.78 0.00
Average 13.522 -1.12

a comparative study over ten large instances with different geographical characteristics, available
also at the same web repository provided in Section 4.1. Some of them are based on instances
of the TSPLIB (http://comopt.ifi.uni-heidelberg.de/software/ TSPLIB95/vrp/), and others were
randomly generated, trying to create clusters of customers with different densities.

Tables 2 and 3 report the results obtained for the MPM instantiations MUr-5c1n2m-Sweep-
Sweep and Ur-2clnlm-Sweep-JSprit without and with exploration phase, respectively. Due to the
large size of the instances considered, we chose Sweep for the routing of the exploration phase,
since it is a simple and fast routing algorithm, although not very efficient. For this reason, it
is not the purpose of the experiments presented here to compare the quality of the solutions
obtained of these MPM instantiations. The algorithms of the others phases and the misplaced
criteria used for the MPM instantiations were those for which we obtained the best results in
the experiments performed. Columns 1 to 6 provide the information about the instances: name,
number of total nodes, number of depots, total depot capacity, vehicles capacity and total customer
demand, respectively. Columns 7 to 10 show the costs and the total running times (in seconds) of
all phases of the MPM methodology, without and with exploration phase, respectively. The last
two columns report the percentage of gap for the costs and the time ratio (the ratio between the
running times observed with and without exploration).

From Tables 2 and 3 we can appreciate that the exploration phase results in a performance
improvement that may depend on the routing algorithms used for the exploration and final phases.
In the case of the same algorithm (MUr-5¢1n2m-Sweep-Sweep), the inclusion of the exploration
phase results in a better final solution for all the instances, with an average improvement of
7.18%. Although the running times increased on average 17 times, they can still be considered
very good taking into account the size of the instances. In the case of different routing algorithms
(Ur-2c¢1nlm-Sweep-JSprit), we note from Table 3 that in most instances (7 of 10) the inclusion of
the exploration phase results in a better final solution, with an improvement in costs from 0.18%
to 6.83%. In addition, empirically it seems that the inclusion of the exploration phase does not
cause a significant increase in the execution times. Indeed, in almost half of the instances there is
a marked decrease in them. This may be due to the fact that the reassignment of customers to
depots of the exploration phase simplifies the final routing, i.e., less effort is needed to obtain a
good quality routing. Again, it can be seen that it is enough to use a simple and fast algorithm for
the exploration phase, and a good and eventually time consuming routing algorithm for the final
phase. However, in some cases using different routing algorithms for the the two phases can result
in a higher cost final solution, as it can be seen in Table 3.
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Table 2. MUr-5¢c1n2m-Sweep-Sweep performance without and with exploration phase.

Inst. Nodes Dep. D.Cap. V.Cap. Dem. Without exp. With exp. % Gap Time
Cost Time Cost Time  cost ratio

Lo1 200 5 4250 80 3885 626409.84 0.319 591986.94 1.811 -5.50 5.68
L02 200 5 4250 80 3885 612327.72 0.043 564351.64 1.904 -7.84 44.28
L03 200 8 4400 80 3885 693744.67 0.078 690438.63 0.583 -0.48 7.47
L04 262 13 15920 500 12106  8438.75 0.060 7373.04 1.840 -12.63 30.67
L05 500 6 15000 300 12488 404082.94 0.327 364345.57 4.123 -9.83 12.61
L06 500 6 15000 300 11750 401862.56 0.440 368230.51 15.161 -8.37 34.46
LO7 800 7 24500 300 22890 572609.36 0.984 546426.73 11.102 -4.57 11.28
L08 800 7 24500 300 24007 585369.28 1.978 542194.85 22.870 -7.38 11.56
L09 1050 50 50073 500 40801 482949.62 3.818 443298.2 16.027 -8.21 4.20
L10 1050 50 44450 500 40411 452780.95 1.934 420944.92 17.881 -7.03 9.25
Average -7.18 17.15

Table 3. Ur-2clnlm-Sweep-JSprit performance without and with exploration phase.

Inst. Nodes Dep. D.Cap. V.Cap. Dem. Without exp. With exp. % Gap Time
Cost  Time Cost Time  cost ratio

Lo1 200 5 4250 80 3885 481912.19 10.202 487401.81 8.475 1.14 0.83
L02 200 5 4250 80 3885 468610.92 7.409 467768.58 6.902 -0.18 0.93
Lo3 200 8 4400 80 3885 578998.86 5.098 578998.86 4.814 0.00 0.94
L04 262 13 15920 500 12106  7022.09 23.496 6542.62 26.43 -6.83 1.12
L05 500 6 15000 300 12488 299702.93 60.413 298152.39 60.57 -0.52 1.00
106 500 6 15000 300 11750 308062.74 56.938 312336.36 50.678 1.39 0.89
Lo7 800 7 24500 300 22890 466505.25 166.581 463011.41 157.925 -0.75 0.95
L08 800 7 24500 300 24007 469352.3 123.842 467293.69 125.404 -0.44 1.01
L09 1050 50 50073 500 40801 390585.03 19.974 388445.21 21.17 -0.55 1.06
L10 1050 50 44450 500 40411 414786.54 17.403 409329.19 18.793 -1.32 1.08
Average -0.80 0.98
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5 Conclusions

The Capacitated Multi-Depot Vehicle Routing Problem (CMDVRP) is an extension of the MDVRP
that considers limited supply on the depots. As far as we know the CMDVRP problem has received
much less attention in the literature than other MDVRP extensions. In order to solve this NP-
hard problem, we introduce a Multi-Phase Methodology (MPM) that extends the well-known
approach of “cluster first, route second”. The most relevant feature of MPM is an intermediate
exploration phase for detecting and reassigning misplaced customers based on VRP algorithms.
As the VRP is a well-known and widely studied problem, the strength of the proposed MPM is to
give a straightforward an efficient general framework for the direct use of VRP algorithms, in many
cases publicly available and free, to solve the CMDVRP. Each MPM phase offers the possibility of
choosing different algorithms depending on the specific characteristics of the problem, the problem
instances, hardware limitations, time restrictions, etc. A specific selection of algorithms, for each
phase, produces a particular MPM instantiation that yields a heuristic procedure to solve the
CMDVRP.

From the results obtained of the numerical experiments carried out, we can conclude that
the multi-phase methodology suggested can result in competitive heuristics compared to exact
methods. In particular, it may be useful for users who often need to find solutions of quality in
a reasonable computational time. We point out that it would be enough to use a simple and fast
routing algorithm for the exploration phase, and a good and eventually time consuming routing
algorithm for the final phase. We also note that in general the exploration phase produces better
solutions without causing a significant increase in the execution times but, in many cases, there
is a decrease in them. This may be due to the fact that the reassignment of customers to depots
during the exploration phase makes that less effort is needed to obtain a good quality final routing.

The proposed multi-phase methodology enables and facilitates the use of different combina-
tions of algorithms and the possibility to define the criterion for misplaced customers that may
include geographical information, supply capacity constraints, time windows and others constraints.
Therefore, it has a great potential to be adapted to specific MDVRP variants such as Periodic-VRP
(PVRP), MDVRPTW or CMDVRPTW. The exploration phase of MPM allows the introduction
of randomness for example in the order in which the misplaced customers are considered to be
reassigned or in the reassignment strategy. We believe that the methodology could benefit from
employing a randomized strategy in order to explore the solution space more extensively and
eventually escape from local optimal solutions.

A possible and interesting direction for future research is to compare the proposed methodology
against different solution procedures of the literature for related problems, such as MDVRP (the
problem without capacity constraints on the depots). In order to make this comparison, we adapted
the instances suggested by [7] and available at http://neumann.hec.ca/chairedistributique/data/
mdvrp/. We consider those MDVRP instances of [7] without supply capacities on the depots
nor time constraints on the routes duration, but do have restrictions on the vehicle fleet size.
Preliminary results obtained in tests comparing different instances of MPM and the multiphase
SFLA-PLEONS algorithm of [13], which as far as we know is one of the faster and more accurate
algorithms in the literature for MDVRP, shown that MPM methodology is competitive with fastest
running times. The objective is to continue doing more tests varying the instantiations of MPM
methodology and also look for other instances of MDVRP in the literature.

Finally, some of the results of the numerical experiment reported, deserve a further analysis. One
of them is to analyze the causes of why the addition of the exploration phase does not increase the
execution times of the overall methodology, as we empirically observed in the numerical experiments
reported in Tables 2 and 3. Another issue is in which cases and why it is sufficient to use a simple
and fast algorithm for the exploration phase, and a good and eventually time consuming routing
algorithm for the final phase, to obtain good quality solutions.
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1 Introduction

This contribution concerns the optimisation of expensive black-box functions, where one com-
putation may last more than a day. Due to the time needed to solve these problems, traditional
optimisers, which involve multiple calls to the objective function, are not sustainable. Consequently,
other strategies have to be invoked to reduce either the number of calls to the objective function
or the computational time of the black-box functions.

The Bayesian Optimisation algorithm [1], coupled with Gaussian Processes [2], is an interesting
way to deal with this problem of expensiveness. Instead of reducing the computational burden of
solving the black-box function, its purpose is to construct a cheaper mathematical model, hinging
on a set of evaluated solutions. Then, iteratively, this set of evaluated solutions is incremented whilst
aiming for the global optimum of the black-box function. This algorithm was already proved to
be efficient in a wide range of applications. To determine the new candidate to add to the set of
evaluated solutions, the Bayesian Optimisation algorithm relies on an acquisition function (or infill
criterion) [3,4] of which the most popular is the Expected Improvement [5].

The fundamental aspect not to overlook when carrying Bayesian Optimisation procedure is
to maintain a good balance between exploration and exploitation. The Expected Improvement is
indeed a compromise between these two objectives but in peculiar conditions, the exploration with
this acquisition function might be sub-optimal and some areas of the design space are completely
hidden from the Bayesian Optimisation algorithm.

Hence, in this sequel, we suggest a strategy to overcome this defect of the Expected Improve-
ment. This strategy consists in transforming the common mono-infill Bayesian Optimisation into a
multi-infill Bayesian Optimisation while using two popular acquisition functions: the Expected Im-
provement and the variance. The performance of this strategy is assessed with several mathematical
problems, which hold multiple local minima.

2 Theoretical background

Gaussian Processes (hereby denoted GP) are a class of surrogate models hinging on a probabilistic
definition of the output Y. This random vector is given to being Gaussian distributed with mean
m and variance § (Eq. 1).

m(x4) = C(x4, X)C(X, X) 1y
8(xx) = C(x4, Xs) — C(x4, X)C(X, X) 1 C (x4, X) (1)
where C(+,-) is the covariance matrix.
Fig. 1 summarizes each step of the Bayesian Optimisation (hereby denoted BO) algorithm,

coupled with GP. At first, prior knowledge about the behavior of the black-box function is com-
puted by generating a training set with a Latin Hypercube Sampling. Next, the surrogate model
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hyperparameters (covariance and likelihood) have to be set. In this communication, we restrict our
choice to the Matern 3/2 covariance function and the Gaussian likelihood, which are two traditional
choices for GP modelling. Then, the surrogate model is optimised according to the likelihood. Fi-
nally, after the prediction, an acquisition function [4, 6, 3] is used to determine the most relevant
new candidate to add to the training set.

Fig. 1 relies on the following data: C(,-) is the covariance matrix, xp, and x4 are samples from
the training set input X, oy is the signal variance, D the dimension number of the problem, 6;,
the lengthscale associated with the i*! dimension, y, the training set output, A7 :=y? . — (),
with yfm-n, the minimum of the training set output at the iteration j, @ is the gaussian cumulative
distribution function, ¢ is the gaussian probability density function.

Choice of covariance
function (Eq. 2) Cx,.x) =0, |1 +—

[ Choice of likelihood

1 1
(Eq. 3) J log(L) = — g log(27) — 3 log(det(C)) — E(YTCY)

[

Expected Improvement _AJ i ° i
(Eq. 4) ] Apx)y=A O ( ?(x)) 50 ( 5(x)

Choice of the acquisition
function

Convergence

L

Fig. 1: Workflow of the Bayesian Optimisation algorithm

Variance -
(Eq. 5) J Ay () =1/5)

As stated before, the Expected Improvement acquisition function (hereby denoted EI) is a
compromise between exploration (second term of the sum) and exploitation (first term of the sum)
whereas the variance acquistion function (hereby denoted Var) is a pure exploratory criterion.

Fig. 2 puts forward an evaluation of both acquisition functions for a given prediction on a toy
function [7]. The maximum of each acquisition function corresponds to the new candidate that will
be added to the training set by the Bayesian Optimisation algorithm. Thus, when using EI, the
new sample lies at 0.481 whereas for the Var, it lies at 1.

From the reference, it is obvious that samples have to be added near 1 since the global minimum
lies here. Adding samples in other locations induces unnecessary calls to the solver. Nevertheless,
the EI is completely blind about this area. On the contrary, the Var strongly highlights the interest
of this area. This area is emphasized due to a lack of exploration (no samples from the training set
are present in this area) and since the prediction mean value is too high, the EI discards this area.
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Fig.2: Common prediction of the Gaussian Process (left figure) and comparison between the two
acquisition function on a toy function (right figure)

Instead of questioning completely the EI, we propose to remedy this exploration defect by
introducing a sample coming from the Var. Thus, at each iteration, two samples are added: one
determined with the Expected Improvement acquisition function and one with the variance acqui-
sition function. We call this new strategy: Multi-Samples Bayesian Optimisation (hereby denoted
MS-BO).

3 Numerical applications

This section aims to highlight the performance of the suggested method. Hence, several functions
are considered and exhibited in Appendix A. All functions have multiple local minima and are
two-dimensional. The Function n°1 corresponds to a rescaled version of the Schwefel function [8]
with zero mean and unitary variance. The other functions are either modified existing functions or
new functions that we have designed to add complexity to the Bayesian Optimisation convergence
process and challenge the methods.

The performance of the EI and the suggested method are evaluated with the regret function
(Eq. 2). This metrics is adimensional and allows to quantify the percentage of improvement from
the initial minimum, min( fo), to the global minimum, ming. 1 means that the global minimum is
reached.

min(fi) — min(ﬁ))

ming — min(fo)

r(ff) = (2)

The regret function is computed after the execution of the BO algorithm for 10 training sets
initialized with 6 points per dimension. The algorithm is set for 125 iterations. The results are
averaged over the 10 training sets and the evolution of this mean is displayed in Fig. 3.

First of all, it is clear that MS succeeds in providing more efficient convergence patterns that
EIL Indeed, for 3 functions over 4, the final optimum determined by MS-BO is the global optimum
whereas EI-BO does not converge toward the global optimum. Then, the convergence patterns
are faster for MS-BO than EI-BO for all considered functions. For 3 functions over 4 (Function
n°1, Function n°2 and Rescaled Schwefel), the convergence towards the global optimum is slightly
slower at the beginning: during 20 iterations, EI-BO performs better than MS-BO. Nevertheless,
the gap is quickly filled and EI-BO is surpassed by MS-BO.

36



1 J. Sadet et al.

0.75+
T
> 05[
o

0 25 50 75 100 125 0 25 50 75 100 125

Number of iterations Number of iterations
(a) Function n°1 (b) Function n°2

~EI-BO
~MS-BO

0 ; ; ; : ‘ 0 ; ; ;
0 25 50 75 100 125 0 25 50 75 100 125
Number of iterations Number of iterations
(c) Function n°3 (d) Function n°4

Fig. 3: Convergence plots for the considered functions (black: Bayesian Optimisation with Expected
Improvement, blue: Bayesian Optimisation with Multi-Samples Bayesian Optimisation)

4 Conclusions

In this communication, an exploration defect has been highlighted on the Expected Improvement
acquisition function in the Bayesian Optimisation algorithm. This flaw induces sub-optimal search
of the design space and, thus, reduced the performance of this algorithm.

A new strategy (Multi-Samples Bayesian Optimisation) has been suggested to overcome this
defect. Numerical experimentations have shown that this new method outperforms the traditional
Expected Improvement both in efficiency and speed.
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A Mathematical functions
Function n°1 defined for x € [—500;500] x [—500; 500], with f = 837.9658 and

G = 273.75725
418.9829d — Y%z, sin (\/m\) —f
f(x) = - ®)

g

Function n°2 defined for x € [0;1] x [0; 1]
f(x) = —0.5 (sin (40(z1 — 0.85)*) cos(2.5(z1 — 0.95)) + 0.5(z1 — 0.9z2) + 1) (4)

Function n°3 defined for x € [0; 1] x [0;1]

f(x) = sin(20(z; — 1)*) + cos*(z2 — 0.8) — (21 — gm)? + %(m -0.8)® (5)

Function n°4 defined for x € [0; 5] x [1;5]

- 3107 2839 , 569 , 2850 , 659 . 177 4\ o
f(x)_(“ 333 71T 230 "1 T 850 T 1007t T 05T T 2479”1 ) T2 (6)
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Abstract. Feasible solutions of the p-location problems can be represented by n-bit binary words with
exactly p ones. A set of selected solutions is called a t-uniformly deployed set, if the minimal Hamming
distance between each pair of solutions is at least 2p — 2t for a given natural number t. The uniformly
deployed sets can be used, due to their diversity, as starting population in evolutionary algorithms for p-
location problems. In our contribution, we present a method for construction of appropriate t-uniformly
deployed sets. The origins of this method trace back to the topological graph theory and we have adapted it
to our purpose.

1 Introduction

A lot of public service design problems are represented by weighted p-median and p-center problems.
It is known that these problems belong to the family of hard computational problems [1]. Hence, various
metaheuristics are used to solve them [2]. An important class of metaheuristics are evolutionary algorithms.
These methods involve a set of starting feasible solutions. It is reasonable to suppose in location problems
that this set has high diversity. Since the feasible solutions of p-location problems can be represented by n-
bit binary words with exactly p ones, the diversity of the solutions can be measured by the Hamming
distance [3]. A set of solutions with minimal Hamming distance 2p — 2t is called a t-uniformly deployed set
(t € N is the maximum number of overlapping 1’s in any two words).
Remark. We notice that the construction of the set, in which the Hamming distance between each pair of
solutions is exactly 2p — 2t, leads to the hard combinatorials problems with no fast algorithms to solve
them. For example, we can point to the construction of difference sets or strongly regular graphs with given
parameters.

In this paper, we introduce a fast algorithm for the construction of t-uniformly deployed sets from

voltage graphs (digraphs). The sets will be given by rows of an adjacency matrix of a digraph derived from
a voltage digraph.

2 Definitions

In this section, we provide some important definitions of notions that are used later.

2.1 The p-Location Problem

The p-location problem is a task of locating p-centers at some of the n possible locations from the set
I. It can be defined by (1), where the decision variable y; gets the value one if a center is located at i € I and
it gets zero otherwise.

min{f(7%y; € {01} i € LEie;v; =2} (1)

Where f(3) is an appropriate objective function. It is known that only few versions of f(3) lead to the
problems solvable in polynomial time [4], [5].



2.2 Hamming Distance

Let two n-bit binary words ¥ = (xy,--,x,,), ¥ = (¥1.--, ¥,) be given. The Hamming distance of ¥ and ¥

H(f:ﬁ) = Xi=alx —wil.

If the words # and § contain exactly p ones, then their Hamming distance is an even number
H(Z,v) € {0,2,4,-,2p).
Let % and ¥ represent two feasible solutions of the p-location problem and H(%,7) = 2q (where g < p). The
expression
2p—2q
=

p—g=t

gives the number of locations contained in both solutions.
2.3 The t-Uniformly Deployed Sets

Let 1, be the set of all feasible solutions of a given p-location problem. Hence, I,, contains all n-bits
binary words with exactly p ones. The t-uniformly deployed set is a subset s < 1,, such that the inequality
H(Z,7) = 2p — 2t holds for each %, 7 € S. It means that any two words % and ¥ from S have at most t ones on
the same positions [6].

2.4 Digraphs

For our needs, we use a more general definition of digraphs. A digraph D is a pair (V,E), where V is a
non-empty set of vertices, and E is a set of directed edges. Every edge has exactly one starting vertex and
one end vertex. Multiple edges and loops are also allowed. We say that e; and e, are multiple edges, if they
have the same starting vertex and the same end vertex. We say that edge e is a loop, if it starts and ends at
the same vertex. A monopole is a digraph that contains only one vertex, and all its edges are loops.
Monopole with p edges is denoted by M, The outdegree of vertex u is the number of edges, which start at
u. We say that vertex v is a successor of vertex u, if there is an edge from u to v. The adjacency matrix of a
digraph is a square matrix A= (au]ﬂxﬂ such that a; ; represents the number of edges from i to ;.

2.5 Groups and Modular Arithmetic

A group (X,*) is a non-empty set X with binary operation = defined on X such that
1)Va,bEX a=*beEX,
2)Va,b,c€X (a*b)*c=a=(b*c),
3)JeeXsuchthat Ya€EX a*e=a=exa,
4)Va€eX JaeXsuchthata*a=e=a=a.
For example, integers Z with operation + form the group (Z,+). In modular arithmetic, there exists another
important class of groups. The set of all remainders of division by k is denoted by Z,. It means that
Z,={01,- k—1}
We can define addition &, on Z;, by the expression
a@, b=mod(a+b,k)

where a.b € Z, and mod(x, v) is the remainder after dividing x by v. It is possible to show that (Z,.,) is
the group for any k € N. Sometimes, we can omit the operation and parentheses, and the group (X,*) can be
denoted by X.



2.6  Voltage Digraphs

The construction of large graphs and digraphs from voltage graphs and digraphs is a method that
was invented in topological graph theory [7]. This method was later used in the Degree/diameter problem

[8], [9], [10], [11].
Let a graph (digraph) ¢ = (V,E) and a group (X,*) be given. If every edge e € E has assigned a value
al(e) € X, then G is called voltage graph (digraph), and values a(e) on its edges are called voltages.

We say that Gy = (Vy, Ex) is a graph (digraph) derived from G, if

1) its vertex set contains all ordered pairs from V x X, (where the vertex (u,i) € V x X is denoted by u;),

2) a pair of vertices u;, v; € ¥ forms an edge from Ey if and only if there is an edge e € £ fromu to v in &
such thati = a(e) =j.

Example: We can consider the voltage digraph G and the group Z; in Figure 1. The derived digraph Gz, can
be seen in Figure 2.

0

1
Figure 1 Voltage digraph G.

uo vo
uy Vi
u> ®

Figure 2 Digraph derived from G.

3 The Construction of Uniformly Deployed Sets from Voltage
Digraphs

In [8], there is shown the construction of the Hoffmann-Singleton graph from a voltage graph with
two vertices and the group Zs x Zs. The Hoffmann-Singleton graph contains 50 vertices, each vertex has
degree seven, each pair of adjacent vertices has no common neighbour, and each pair of non-adjacent
vertices has exactly one common neighbour. It follows from these facts that any two rows of its matrix have
the Hamming distance 12 or 14. Hence, the rows of this matrix form the 1-uniformly deployed set for n = 50
candidates and p = 7 locations. However, the Hoffmann-Singleton is a graph with many special properties. It
is a strongly regular graph, a Moore graph, and a triangle-free graph. It is known that graphs with these
properties occur rarely. This is the reason why we decided to construct digraphs with less constraints by this
method. It is possible to show that a t-uniformly deployed set (n, » and t are given) can be obtained from
adjacency matrix of a digraph on n vertices, in which every vertex has outdegree p and each pair of vertices
has at most t common successors. We denote such digraphs by D(mn,p, = t). In this paper, we study possible
constructions of D(n, p, < t) from monopoles M,, and groups Z,,.

Example. We show the construction of 1-uniformly deployed set for n = 10 and p = 3 by this way. We start
with monopole M5 and group Z;,. Let the vertex of M; be denoted by v and edges e, e, and e;. We assign

4l



the following voltages to these edges: e; = 1, e; — 2, and e; — 5. The adjacency matrix of the derived
digraph is

0110010000
0 011001000
0 001 100100
0O 00 01 1 0010
0O 00 001 1 0 01
100 0001 1 00
0100 O0O0O0TI1T10O0
0 01 00O0O0OTO0DTI1T1
1001 000 0 01
11001 00 0 0 O

We can check that the rows of this matrix form the 1-uniformly deployed set. All information about this
digraph is in quintuple

(M3,Z,,,1,2,5).
In general, for M,, and Z,, let v; and v; be vertices with common successor v,. It means that the edges

(v vy), [:Uj:'“;c) EE;.

Hence, there exist voltages . f§ € Z,, on edges of ¢ such that i 6,a =k and j &, f = k. From these
equations, we obtain
_ j=id, EIGBWG_J
where 8 is the inverse of £ in Z,. The list of all such vertices v;, which have common successors with a
given vertex v;, can be obtained from the following table. We will call this table a range matrix for (p + 2)-
tuple
l:Mp,Zﬂ,afl,- -, crp).

6. o o %
y 0 a; B, T a; Dn @y
a, | a, P, o 0 a; O, T,
@, Epeaﬂq_l ﬂ-’p@'nﬂf_z 0

The number of occurrences of value y € Z,, in the range matrix is the answer to the question: how many
common successors do the vertices v; and v, have?
Example. The range matrix for (M3,Z44,1,2,5) is

ENEIENE
10|96
2[1]0]7
5(4(3]0

Each value from Z,,, except the zero, occurs in the range matrix at most once. It means that a vertex v; has
exactly one common successor with vertices v;qs, Vigs, Vig1, Vim7, Vigar Vims, aNd NO common successor
with vertices viaz, vVigs, Viga, SiNCE the range matrix does not contain values 2, 5, and 8.

Example. A 1-uniformly deployed set for n = 80, p = 8 can be represented by 10-tuple
(Mg, Zgy,1,2,4,12,21,27,34,39).
The corresponding range matrix is

By | 79|78 | 76 | 68 | 59 | 53 | 46 | 41
1 0 |79 |77 |69 |60 |54 |47 |42
2 1|0 |78 |70]|61|55)|48 |43
4 3] 2 72 | 63 | 57 | b0 | 45
12 |11 |10 | 8 | O |71 |65 | 58| 53

=




21 (20|19 |17 | 9 | O | 74| 67 | 62
27 |26 |25 |23 |15| 6 | 0 |73 |68
34 |33 32|30 (22|13 7 | 0 |75
39 |38 |37 (35|27 |18|12| 5 | O

Each value from Zg,, except the zero, occurs in the range matrix at most once. Hence, this 10-tuple
represents a 1-uniformly deployed set.

4 How to Construct the Set of Voltages

The main computational problem is the construction of an appropriate set of voltages. We present this
problem for the Bratislava Region, where we have 87 candidates for emergency stations and we need to
choose 14 locations. We have (3,) possibilities how to do it and we also have the same number of

possibilities for the set of voltages.

Hence, in this section, we present the algorithm for choosing the voltages to obtain the derived
digraph with parameters D(n,p,<t). We define for these purposes an increasing sequence {a;}2; of
nonnegative integers. We will call it a t-sequence and it can be stated recursively:
l.a;=0a,=1,

2. For k= 2, a;, is the minimum value such that for all i € {1,---, k — 1}, the value a, — a; occurs between
values a; —a; (where 1 =i < j < k) at most t — 1 times.
The first g members of t-sequence can be computed by the following algorithm:

Let ay=10;a,=1;
For k=3,-,qg
x=ap+1;
Apy={a;—agl=i<j<k};
While a; =10
yi=1;
For i=1,-,k—1
If x—a; €4, at most t—1 times
Then y=y-1;
Else y:=v-0;
If ¥y=1 Then a;=x;
Else x:=x+1;

Where 4, is multiset.
Examples of the first g = 15 members of t-sequences for t = 1,2,3,4 can be seen below:

1 0,1,3,7,12,20,30,44,65,80,96,122,147,181,203
2 0,1,2,4,7,11,16,22,30,38,48,61,73,86,103
t=3 0,1,2,3,5,8,12,16,21,27,33,40,48,57,71
=4 0,1,2,3,46,9,13,17,22,27,33,39,46,53

If we want to construct a digraph D(n,p, < t) from monopole M, group Z,, and t-sequence for appropriate t,
then we can use the following procedure:

1) If a,, < n/2, then the voltages on edges are the members of t-sequence. It follows from the properties of ¢-
sequences that the digraph derived from (M,.Z,.a;,--.a,) is D(n,p, < t).

2)Ifa,_, <n/2,and a,_,,, =n/2 (for small x € N, for example x € {1,2,3,4}), then the voltages are a; = a;
fori=12-,p—x.

Forkef{p—x+1,-,p}, a, € {ay_1+ 1,--,n— 1} is the minimum value such that for all i € {1,---, k — 1},
the values a;, &, &, and a; &, @, occurring in the multiset

{a, @, @,;Vijsuchthatl < i,j <k,i+j}
at most t times.



3) If we still do not have p voltages, then we can increase t ==t + 1 and repeat step 2 to complete the set of
voltages.
Example. A 4-uniformly deployed set for the Bratislava Region can be constructed from

(My4,747,0,1,2,3,4,6,9,13,17,22,27,33,39,46)

where all voltages are computed by previous procedure from 4-sequence.

5 Limitations

What are the limits of parameters n, p, and t, when we construct t-uniformly deployed sets from
and Z,,? From the range matrix, we have inequality
where p(p — 1) is the number of non-zero elements in a range matrix and n — 1 is the number of non-zero
elements in Z,,. From this inequality, we have some upper and lower bounds for n, p, and t. Lower bounds
for n computed from inequality

-1
@ +1=<n

can be seen in table

p\t| 1| 2] 3] 4
10| 91| 46| 31| 24
20 | 381 | 191 | 128 | 96
30 | 871 | 436 | 291 | 219

Lower bounds for t computed from inequality

plp-1 _.
n—1
can be seen in table
p\n | 100 | 200 | 300
10 1 1 1
20 4 2 2
30 9 5 3

From inequality
pi—-p—tln—-1) =0,
we have interval

1—/1+4tln—1) 1+, 1+4t(n—-1)
& 2 ’ 2
and some upper bounds for p can be found in table

)

n\t| 1| 2| 3] 4
100 | 10 | 14 | 17 | 20
200 | 14 | 20 | 24 | 28
300 | 17 | 24 | 30 | 35

6 Computational Results

Colleagues J. Janacek and M. Kvet tested the efficiency of using the UDS in various heuristics to
solve the weighted p-median problem and its generalised version. Their results can be found in [3], [6], [12],
and [13]. We tested Swap and Path-relinking heuristics for the weighted p-median problem in [14]. Some
numerical results (for generalised p-median problem) can be seen in the following table (taken over from
[15]), which shows the tests of the discrete self-organizing migrating algorithm (DSOMA) with and without
UDS extension. Benchmarks for the tests are derived from the self-governing regions of Slovakia.



Regions n| p| OptSol | DSOMAy | Timey [s] | DSOMA | Time [s]
BB | 515 | 36 44752 44907 30.3 44923 30.1
KE | 460 | 32 | 45588 45733 17.6 46099 17.5
NR | 350 | 27 | 48940 48996 8.5 49986 8.3
PO | 664 | 32 | 56704 56936 2.8 60476 20.5
TN | 276 | 21 | 35275 35789 3.4 49260 3.2
TT | 249 | 18 | 41338 41432 2.0 44090 2.0
ZA | 315 | 29 | 42110 42140 8.7 42145 8.7

The columns of the table mean:

Regions — shortcuts of the self-governing regions of Slovakia (Bratislava region is omitted),

n — the number of candidates for placing an emergency station,

p — the number of emergency stations that need to be located,

Opt Sol — optimal value of the objective function for the generalised weighted p-median problem,
DSOMA\ - values of the objective function obtained by DSOMA with UDS extension,

DSOMA — values of the objective function obtained by basic version of DSOMA,

Timey, Time — computation time.

7 Conclusions

In our contribution, we introduce the construction of t-uniformly deployed sets from voltage graphs.
We study possible constructions from monopoles with elements from Z,, as voltages. We also derive some
limitations for these classes of graphs and groups. The constructions from more complicated voltage graphs
and groups will follow in our next paper. The effect of using t-uniformly deployed sets in genetic algorithms
is tested in [13], and [14], where the authors present its efficiency on real data from regions of Slovakia. The
solutions that can be obtained by this method could have applications in real-life contexts, such as the
location of emergency stations within certain environs.
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Abstract. Every year, wildfires accentuated by global warming, cause economic and eco-
logical losses, and often, human casualties. Increasing operating capacity of firefighter crews
is of importance to better face the forest fire period that yearly occurs. In this study, we
investigate the real-world firefighters timetabling problem (FFTP) of the INFOCA institu-
tion in Andalusia (Spain) with the aim of increasing operating capacity while taking into
account work regulation constraints. We propose an Integer Linear Programming model and
an Adaptive Iterative Destruction Construction Heuristic solution approache to address the
problem. We report on experiments performed on datasets generated using real-world data
of the INFOCA institution. The work was initiated as part of the GEO-SAFE project’.

Keywords. Timetabling, Firefighters, ILP, Adaptive destruction/contruction heuristic

1 Introduction

Timetabling problems [1, 7, 9] involve allocating resources within time slots considering a prede-
fined planning horizon while respecting precedence, duration, capacity, disjunctive and distribution
(spacing, grouping) constraints. Staff planning aims at building timetables so that an organiza-
tion can meet demands for goods or services. For each staff member, working and rest days are
scheduled in a timetable while taking into account work regulation constraints and local regulation
constraints, if any.

The first works on personnel scheduling can be traced back to Edie’s work on traffic delays at
toll booths [5]. Since then, scheduling algorithms have been applied in a lot of areas like transporta-
tion systems (airlines, railways), healthcare systems, emergency services (police, ambulances), call
centers and other services (hotels, restaurants, commercial stores).

Comprehensive literature reviews covering a wide area of problems with many references on
personnel scheduling can be found in [6, 10]. The works are classified by type of problem, application
area and solution method. As an example, the nurse rostering [4] is a scheduling issue in health
systems. The objective is to build a daily schedule for nurses with the aim of obtaining a full
timetable over few weeks for the institution. The rosters should provide suitably qualified nurses
to cover the demand of working shifts arising from the numbers of patients in the wards. The
resulting schedule should comply with regulatory constraints and should ensure that night and
weekend shifts are fairly distributed while accommodating nurse preferences.

Staff scheduling is known as crew scheduling in transportation systems areas such as mar-
ket/airlines, railways, mass transit and buses [2]. For these problems, there are two common fea-
tures. The first is that both temporal and spatial constraints are involved. Each task is characterized
by its starting time and location, and, its ending time and location. The second is that all tasks
to be performed by employees are determined from a given timetable. The tasks are determined
following a decomposition of the different duties that the company must ensure within a planning
period. A task may be assuring a flight leg in airlines or ensuring a trip between two segments in
a train.

The firefighters problem that we address consists in providing the INFOCA’s daily schedule
within a fixed planning horizon for a number of firefighter crews. Each firefighter is assigned to a
crew for a year. These firefighters crews can be assigned to several types of shifts such as helicopter

! https://geosafe.lessonsonfire.eu/
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work, night work, work on demand (24 hour on call). The planning period is the high-risk period
from 1st June to 15th October where wildfires yearly occur (forest fire period).

The objective is to build a schedule for every crew of firefighters, hence a full timetable that cov-
ers all the forest fire period. The aim is to maximize the overall operating capacity while respecting
the minimum demands for each shift, the regulatory constraints imposed by the institution as well
as other soft constraints of good practice in order to make the schedules adequate to the preferences
of the institution. The constraints of good practice relate to the grouping of assignments of same
shifts within consecutive days, the allocation of compensations after rest days while maximizing of
the number of operational crews a day.

The application of various metaheuristics to employee scheduling problems is presented in the
reviews mentioned above. In this study, we choose to investigate an algorithm mainly based on an
Adaptive Iterative Destruction/Construction Heuristic (AIDCH) [3]. An initial feasible solution
that only complies with the minimum demands is build first by applying a constructive heuristic.
Then, the AIDCH approach that we propose aims at increasing the overall operating capacity by
first partly destroying a solution, next it is completed by inserting as many crews as possible, that
can be easily done through a Destruction/Construction Heuristic approach. While completing the
solution to increase the overall operational capacity, we make work together adaptive diversification
mechanisms and parallel independent searches to avoid to be trapped in a local optimum.

In this paper we propose an Integer Linear Programming (ILP) formulation together with
an Adaptative Iterative Destruction Construction Heuristic (AIDCH) to address the firefighters
timetabling problem (FFTP) of the INFOCA institution. The ILP is designed for modeling pur-
poses and with the aim of giving lower bounds useful for the tuning analysis of the AIDCH solution
approach. The Adaptive Iterative Destruction/Construction Heuristic is composed of an adaptive
diversification mechanism at the destruction phase followed by an adaptive construction phase,
based on a Best Insertion Algorithm, which performs parallel independent searches. The initial
parameter values are adjusted by the algorithm according to the solution progress throughout the
resolution process. The AIDCH is appropriate to generate solutions of good quality for the larger
instances. The remainder of the paper is organized as follows. Section 2 provides a description
of the FFTP, then the ILP formulation is presented in Section 3. The proposed AIDCH solu-
tion approach is described in Section 3. Computational experiments performed on a benchmark
that we generated using real data of the INFOCA firefighter institution are reported in Section 4.
Conclusion and future works are given in Section 5.

2 Problem description

In this section we present a global overview of the real-world firefighter planning problem that we
address. We gives the set of daily working shifts to be considered, we introduce the hard constraints
to be respected and the soft constraints used to assess the quality of a solution.

The notations used for the types of shifts and their brief descriptions are the following;:

(T12) from 8 am to 4 pm at fire station, regular daily shift;

(T16) from 3 pm to 10 pm at fire station, regular daily shift;

(H) from 8 am to 4 pm at fire station, regular daily shift, assigned to a helicopter;

(N) from 10 pm to 8 am at fire station, regular night shift;

(G7) from 7 am to 3 pm at fire station, stand-by to face instantly any extra urgent request;
(G24) 24h guard, crew stay at home but may be mobilized to face any urgent situation;
(A3) from 8 am to 6 pm at fire station (or elsewhere) for training purposes;

(R) rest day;

(C) additional compensation day granted when a number of hours have been worked.

For the considered firefighters timetabling problem, the hard constraints relating to work reg-
ulation and to local regulation of the INFOCA institution are the following:

(H1) one shift a day: a firefighter crew can only be assigned to one shift a day;

(H2) minimum demands: each daily shift has a minimum demand of firefighter crews;

(H3) forbidden shift successions: some shift assignments on consecutive days are forbidden;

(H4) maximum workload: over the planning horizon, a maximum workload for every crew
should not be exceeded;
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(H5) compensation: compensation days are granted according to the hours worked, they should
be used;

(H6) maximum consecutive working days: every firefighter crew have a maximum number
of consecutive working days.

Some consecutive shift assignment are forbidden for a crew (H3), for instance a night shift
ends at 8 am and cannot be followed by an helicopter shift which begins at 8 am, this forbidden
consecutive shift assignment is denoted as (N, H).

Soft constraints are constraints of good practice that should be satisfied as best as possible.
The violation of any soft constraint induces a penalty. A weighted sum of the penalties measures
the quality of the solution produced. For the studied firefighters timetabling problem, the soft
constraints are the following:

(S1) shift grouping: assignments of a crew to the same shift should be grouped. Each shift
assignment change between two consecutive days is penalized;

(S2) same start time: start times should be the same whatever the working shifts over consecu-
tive working days. Each starting time change for working shifts between two consecutive days
is penalized;

(S3) compensation assignments: compensation day assignments should be right after the rest
days, the aim is to allow firefighters to have a short vacation during the planning period. Each
assignment of compensation not right after rest days is penalized.

(S4) period fairness: for the sake of fairness the workload should be balanced between the crews
over the planning period. The unbalance of workload between crews should be minimized;

(S5) preferences: each crew assignment to an undesired shift is penalized;

(S6) evenly balance extra daily shifts: assigning of extra crews to the different shifts should be
balanced each day. The unbalance on extra assignment to different shifts should be minimized
each day.

Provided the minimum demand (H2) is respected, the idea beyond (S6) is to ensure a balance
between shift assignments. If we can assign three extra crews for a day, we had better to assign a
crew to three different shifts to balance operating capacity rather than assigning the three crews
to a same shift.

3 ILP model for FFTP

In this section we present the ILP model for minimizing the criteria detailed in Section 2. The ILP
has a twofold objective, first a modeling purpose for investigating the problem we face, second we
aim at obtaining optimal values whether possible for the smaller instances within a reasonable time
limit (or lower/upper bounds). This allows to get reference values to make comparisons with the
AIDCH solution approach that we propose. We present data and parameters prior to the decision
variables, we then give the model.

The data and parameters are the following:

Days set of days of the planning period, a day d € [1,- - , 4], size ng;
Shifts set of types of shifts, a shift s € {T'12, T'16, H, N, G7, G24, A3, R, C'}, size ng;
Crews set of firefighter crews, size ng;

lq last day of the planning period;

F set of couples of forbidden consecutive shift assignment, e.g. (N, H) € F}
rs daily minimum demand for a working shift s € {Shifts\ {R, C}};

ls duration of shift s (length in hours);

L maximum workload for any crew over the planning period;

t, start time of shift s;

Wye Operating capacity weight;

wsg shift grouping violation weight (S1);

wWsst same start time change violation weight (S2)

Weq compensation assignments violation weight (S3);

w,, preferences violation weight (S5);
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Pesa if crew ¢ does not prefer to work on shift s on day d pesq = wp, zero otherwise (S5);
MAX,; maximum number of consecutive work days for a crew (H6);
W HC number of worked hours giving a compensation day.

The primary boolean variables are X .4, if the crew ¢ works on shift s in day d then X ..q = 1,
zero otherwise. The secondary boolean variables used in the model are the followings:

Qess'd = 1 if crew ¢ works on shift s in day d and works on a different shift s’ in day d + 1, zero
otherwise;

Bessta = 1 if crew ¢ works on shift s in day d and works on a different shift s’ in day d + 1 with
ts # tg, zero otherwise;

Yess'da = 1 if the crew ¢ works on shift s in day d with s 2 R’ and is assigned to shift s’ =" ¢’ in
day d + 1, zero otherwise.

aess'da = 1 if a shift change violation occurs (S1, shift grouping), Bessra = 1 if a working time
change violation occurs (S2, same start time) and .55 = 1 if a compensation assignment violation
occurs (S3, compensation assignment).

The integer variables used in the model are the followings:

Mg daily difference between the maximum number of assignable crews (n.) and those assigned;
d. total number of worked shifts for crew ¢ over the planning period;

0. total working time of crew ¢ over the planning period;

pea number of worked hours of crew ¢ from the first day to day d;

¢eer mumber of shift assignment difference between the crews ¢ and ¢’ (S4);

e working time difference between the crews ¢ and ¢’ (S4);

hss» unbalance of assignments between the shifts s and s' (S6).

The aim is to maximize operating capacity over the planning period while minimizing the soft
constraint violations. We propose the following ILP to address this problem:

Min
Woe - Z Ad (1a)
deDays

Z Z Z Z (wsg * Qlegs!d T Wsst ﬂcss’d + Weq - ’chs’d) (1b)

ceCrews seShifts\{R, C} s’e€Shifts\{R, C} d€Days

+ Z Z (¢cc’ + Socc’) (IC)

ceCrews c’'€Crews

+ Z Z Z Pesd - Xcsd (1d)

ceCrews seShifts\{R, C} d€Days

> > (Le)

seShifts\{R, C} s'€S\{R, C}

Subject to:
Z Xesa=1 Vece Crews, Vd € Days (2)
seShifts
> Xewa=r. Vd€ Days, Vs € {Shifts\ {R, C}} (3)
ceCrews
Xesa + Xesrary <1 Y(s,s") € F, Ve € Crews, Yd € Days \ {lq} (4)
Z Z lg- Xesg <L Veée Crews (5)
se{Shifts\{R, C}} d€Days

Z Z ls» Xesq = pea Ve € Crews, Yd € Days (6)

se{Shifts\{R, C}} d’€Days,d'<d

Pcd

< — ) 2

Z Xesa < WHC s ="C", Vc € Crews, Vd € Days (7)

d’€Days,d’'<d
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Z Xesa = {%J +1 s="C"Vec Crews (8)
deDays
Z Z Xesa < MAXy Ve € Crews, Vd € Days (9)
s€{Shifts\{R, C}} d’<(1+MAXy),(d+d")<lq
Z Z Xesd =ne—Ng Vd € Days (10)

ceCrews se{Shifts\{R, C}}

Vs, s’ € {Shifts\{R, C}},s# s
Xcs Xcs’ < 1 css’ 11
a7 (@+1) T essra {VC € Crews,Vd € {Days \ {l4}} (11)

Vs, s € {Shifts\{R, C}}, s # &, witht, #ty
Xcs Xcs’ <1 css’ 12
a7 (@+1) + Pessta {Vc € Crews,Vd € {Days \ {la}} (12)
s € {Shifts\{R, C}}, s ='C
Xesd + Xesrarr < 1+ 13
¢ Resrars S LA Yossra {vc e Crews, ¥d € {D\ {la}} (13)
Z Z Xesa =06, Ve e Crews (14)
s€Shifts\{R, C} d€Days

Z Z ls Xesa=0, Ve Crews (15)

seShifts\{R, C} deDays

0 — 0 < e Ve, € Crews, c# ¢ (16) O — 00 < @eer Ve,d € Crews, c# ¢ (17)

Vs, s’ € {Shifts\{R, C}}
( Z Xcsd - Ts) - < Z Xcs'd - Ts’) < wss’ {Vd c Days (18)

ceCrews ceCrews

Xcsd7 Aess’ds /Bcss’da Yess'd € {07 1} (19) 50, 9(;7 Ped; ¢cc', Pee’y ¢ss' eN (20)

The five terms of the objective function aims at maximizing operating capacity while minimizing
the soft constraint violations. The first term (la) aims at maximizing operating capacity. The
weighted sum (1b) assesses the (S1, shift grouping), (S2, same start time) and (S3, compensation
assignments) soft constraint violations. The period fairness (S4) soft constraint relates to the
number of shift assignment differences and to the working time differences between crews, they are
considered using the (1c) term. The preferences of the firefighters (S5) are considered using the
(1d) term. The evenly balance of extra daily shifts (S6) is considered using the (1le) term.

The hard constraints one shift a day (H1) are enforced by Equation (2). The hard constraints
minimum demands (H2) are enforced by Equation (3). The hard constraints forbidden shift
successions (H3) are enforced by Equation (4). The hard constraints maximum workload (H4)
are enforced by Equation (5). The hard constraints compensation (H5) are enforced by Equations
(6)-(8). For a crew ¢ and a day d, Equation (6) count p.q, the number of worked hours of crew ¢
from the first day of the planning period to day d, and links variables X.sq and p.q. For a crew ¢
and a day d, Equation (7) forces the number of compensation days (s =" C”) being assigned to be
less or equal to (peq/W HC') since one compensation day is granted when W HC' worked hours are
made. For a crew ¢, all the compensation days must be assigned over the planning horizon (until
d = l4), this is enforced by Equation (8). The hard constraints maximum consecutive working
days (H6) are enforced by Equation (9). For a crew ¢ and a day d, the crew is assigned to at most
M AX, consecutive working shifts (rest and compensation days are not to be considered).

The daily differences between the maximum number of assignable crews (n.) and those assigned
are to be minimized to optimize the overall operating capacity, the Ay values are assessed by
Equation (10).
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Consider a crew ¢, two days d and d+ 1, if the crew is assigned to two different shifts (s # s) a
shift grouping (S1) soft constraint violation occurs and Equation (11) sets assrq = 1. Consider
a crew ¢, two days d and d + 1, if the crew is assigned to two different shifts (s # s’) and the
start times of these shifts are different (¢ # ts) a same start time (S2) soft constraint violation
occurs and Equation (12) sets fess'¢ = 1. Consider a crew ¢, two day d and d + 1, if the crew is
assigned to a working shift (s # 'R’) on day d, and if this crew is assigned to a compensation day
(s =’C’) on day d + 1 a compensation assignment (S3) soft constraint violation occurs and
Equation (13) sets vessa = 1. Every compensation day assignment will be right after a rest day
(constraints of good practice imposed by the institution).

Consider a crew ¢, Equation (14) counts J. the total number of worked shifts over the planning
period and Equation (15) counts 6. the total working time over the planning period. Hence, Equa-
tion (16) gives ¢.» the number of shift assignment differences. Given that ¢.» € N, a negative
difference involves ¢. = 0, so for any couple of crews only positive differences are counted. The
same rationale applies on Equation (17) for .., the number of working time differences. These
variables ¢ and @ are used for the period fairness (S4) soft constraint violations assessment.

We recall that preferences (S5) soft constraint violations are assessed by Equation (1d).

Consider a day d and two shifts s and s, Equation (18) aims at evenly balance extra daily
shifts (S6). Minimum demands (H2) are enforced by Equation (3), assigning of extra crews to
shifts should be balanced each day within the forest fire period to increase operating capacity.

Equation (19) defines variables X sq, Qess’ds Bessra and Yessrq as boolean. Equation (20) defines
variables 0., 0., ped, Geer, Peer aNd Vs as integers.

4 Adaptive iterative destruction/construction heuristic

We propose an Adaptive Iterative Destruction/Construction Heuristic (AIDCH) to compute solu-
tions of good quality for larger instances of the FFTP. The Algorithm 1 gives the global scheme
of the AIDCH proposed approach. We use the adaptive construction approach BuildFeasibleSched-
ule() to build an initial solution which respects the hard constraints. The initial solution complies
with minimum demands (H2) but there is room for improvement in operating capacity.

Algorithm 1: General structure of AIDCH

Input : An instance of FFTP

Output : Sphest best solution found

Parameters: Dj;, i limit for diversification degree, n. number of crews
ns number of type of shifts

Variables : iter number of iterations, MaxIter maximum iteration
D.paqo diversification degree, S, current solution

iter := 0

Mazxlter := n.

Dmax =3

Diimit = [%

Scur := BuildFeasibleSchedule()
Sbest = Scur

while iter < MaxIter do

k= rand(1,Dmax)

AdaptativeDestruction(Scyr,k) /* adaptive diversification */
AdaptativeConstruction(Scqr) /* insert as many crews as possible in Scq, */
if Seur > Shest then

Shest := Scur

iter := 0

Doz =3

else
iter + +
Dimaw := min(Dmaxz+1,Diimit)

end
end

Provided a feasible solution, at each iteration, a part of the solution is destroyed by removing
at random a number k of crews, then it is completed by inserting as many crews as possible in
order to increase the operating capacity (while respecting the hard constraints). At each overall
iteration at most Dypq. crews are removed (k < Diyq.). Therefore, we define D,y,q, as the degree of
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Algorithm 2: Best Insertion Algorithm

Input : Scur a partial solution
(e, B,7,0,w, p) parameter set
Output : Spest best solution found
Variables : (d,s,c)” best triplet, success boolean
Sbest := Scur /* store reference solution for BIA */
success := true
while success do
(ds,0)" = (0,0,0)
foreach d € Days do
foreach s € Shifts do
foreach c € Crews do
ComputeBIC(d,s,c)
UpdateBestTriplet (d,s,c)”

end
end
end
success := Insert(Scyr, (d,s,c)*) /* if no feasible insertion, Insert returns false */
/* Comparing Sy, and Spest, all terms of the objective function are assessed */
if Scur > Spest then
| Sbest := Scur
end

end

diversification. The D, value is initialized to 3, next incremented after each non-improving overall
iteration up to Dyjmit. We set Dyimit = [ne/ns] which represents the average number of crews that
can be assigned to shifts. Provided an improvement is found, D, 4, is reset to 3 to entirely explore
the neighborhood of the new solution. We perform an adaptive construction procedure to complete
the solution. This process is reiterated and it stops when MaxIter overall iterations have been
performed without improving the quality of the solution. We set MaxzlIter = n.. The final result
is the best solution found over all iterations.

The proposed AIDCH algorithm makes use of an adaptive diversification mechanism with the
aim to escape from local optima. We explore the neighborhood of the new solution as soon as an
improvement is found. We explore more distant zones by increasing D,,,, whenever the search is
trapped in a local optimum.

The main component of the AIDCH heuristic is the Adaptative Construction(Se,, ) procedure, an
adaptive construction heuristic based on a Best Insertion Algorithm (BIA) shown in Algorithm 2.
The BIA algorithm considers a partial solution S.,,, and tries to insert as many crews as possible
in Seyr, one by one. At each iteration, the BIA assesses all feasible insertions that respect the hard
constraints and scores them according to a Best Insertion Criterion (BIC). The best insertion is then
performed and the quality of S, is assessed considering all terms of the objective function (1a)-
(1e). This process is iterated until no more valid insertion is possible. The algorithm returns the
updated S, the best solution over all the BIA iterations.

To evaluate the insertion of a crew in the planning (day, shift), we propose to compute the Best
Insertion Criterion (BIC) as follows:

(SG® % SST? x CAY x PF? « P¥ « EB")

The aim is to minimize the soft constraints violation whether the insertion is performed. In
case a hard constraint is violated (e.g. maximum workload (H4)), the BIC is set to 400 . The
criterion is composed of 6 terms, one for each soft constraints: SG is for the Shift Grouping (S1),
SST is for the Same Start Time (S2), C'A is for the Compensation Assignments (S3), PF is for
the Period Fairness (S4), P is for the Preferences (S5) and EB is for Evenly Balance extra daily
shifts (S6). The terms are weighted with parameters «, 8, 7, 6, w and p in order to control their
relative importance.

At each iteration i of the AIDCH heuristic, AdaptativeConstruction(Sey,) works as follows.
Four constructive heuristics launch separately BIA with different values of the parameter set
(o, B,7,0,w, ) on the current solution. During each launch, «, S, v, 6, w and p are chosen ran-
domly in the 6 dimension space having the center (a;_1, 8i—1,%Vi—1,0i—1,wi—1, i—1) and the side
length ¢, where a;_1, Bi—1, vi—1, 0;—1, wi—1 and p;_1 are the best parameters obtained by the
method at previous iteration. All four BIA being applied, the parameter set that produces the best
solution is stored to be used in the next iteration.
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Finally, the best solution obtained among the four methods is retained as the current solution.
This aims at performing parallel independent searches in the solutions space and at choosing the
best values of the parameters to better explore the solutions space to speed-up the convergence of
the AIDCH algorithm toward a good solution.

5 Computational experiments

In our experiments, our objectives were: (i) to show the adaptive construction impact, by comparing
¢ together with the best parameter set that produces the best solution at previous iteration to
compute the next parameter set, versus a fully randomized parameter set; (ii) to show the efficiency
of the adaptive destruction, impact of an adaptive D,,,, for perturbations versus a constant one;
(iii) to compare performances between the ILP model and the AIDCH approach within a 3600
seconds time limit.

Tests were done using C++ compiled with gcc version 7.5.0, using STL, using a CPLEX 12.10
[8] solver with a single thread and the MipEmphasis parameter set to feasibility, on a machine with
an Intel(R) Xeon(R) X7542 CPU @ 2.6 GHz and 64 GB of RAM.

Datasets overview and performance metric

We tested the ILP and AIDCH approaches on a benchmark composed of 4 datasets, each having
7 instances, that we generated using real data of the INFOCA firefighter institution. Datasets have
been created to be of increasing difficulty, the firsts of reasonable sizes given that the ILP may face
difficulty to get a solution within the time limit. The instances in datasets are ranged according to
the number of crews n. and to the total daily number of working shifts demands (i.e. > rs). So,
instances are denoted as ¢cXXrYY (a/b), the (a/b) notation is used whether n. and > r, equals
for two distinct instances which are different in minimum demands distributions.

For each instance, the AIDCH algorithm is run 10 times. We recorded the Relative Percentage
Error, we defined as RPE = 100 * (Zpest — Zmaz)/Zbest and the Average Relative Percentage
Error, we defined as ARPE = 100 % (Zpest — Zavg)/Zbest Where Zpqy is the best result obtained
among the ten executions, Z,,4 is the average result obtained among the ten runs and Zjs; is the
best solution found by the AIDCH approach for the according instance. The ARPE criterion aims
at investigating whether the AIDCH is stable over the runs.

To compare the solutions found by the AIDCH approach against the solutions attained by the
ILP approach, we define the Relative Percentage Gap as RPG = 100+ (Zr.p — Zmaz)/Z1Lp Where
Z11,p represents the solution value attained, if any, by the ILP approach for an instance.

For our experiments using the ILP, we set w,. to 2, wgy to 1, wee to 1, we, to 1 and wy, to 2.

Impact of the adaptive construction mechanism

We first carried out preliminary experiments to choose the best value of ¢ that is necessary to
show the impact of the adaptive construction mechanism, because of lack of space those experiments
are not reported here. According to these experiments, the parameter value ¢ = 0.1 provides the
best results considering RPE.

—e— With adaptative construction —e— With adaptative destruction
175 —— Without adaptative construction 175 —— Without adaptative destruction

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
AIDCH iterations (x1000) AIDCH iterations (x1000)

Fig. 1. Adaptive construction impact Fig. 2. Adaptive destruction impact
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The adaptive construction mechanism aims to guide the search by computing at each time the
best trade-off between the different terms of the BIC representing soft constraints violations. To
show whether it is efficient, we conducted experiments with the adaptive construction mechanism
and without the adaptive construction mechanism. In that latter case, the parameters of BIC are
chosen randomly in [0, 1] at each iteration. In these experiments, for each instance, the algorithm
is launched and we record the best solution for the first 15000 iterations. We performed these tests
using 2 instances chosen at random from each dataset. We report in Figure 1 the average of RPE
values computed for the 8 chosen instances against the number of iterations.

As it can be shown in Figure 1, the adaptive construction mechanism permits to converge faster
toward good solutions rather than without adaptive construction mechanism.

Impact of the diversification mechanism

To evaluate the effectiveness of the adaptive destruction, we tested a version of AIDCH where
the diversification degree D,,.. is set to 3. As aforementioned, we record the best solution for
the first 15000 iterations using this fixed value. We proceed in the same way using the adaptive
diversification mechanism that makes use of D,,,. to explore the neighborhood of the new solution
as soon as an improvement is found and also to explore more distant zones whenever the search is
trapped in a local optimum.

Figure 2 shows the average of RPE values recorded against the number of iterations for these
two versions. The adaptive diversification mechanism, achieved using the management of D4z,
permits to converge faster toward good solutions rather than without its use.

Based on these two graphs, we can easily notice that the average of RPE values with the
adaptive mechanisms is always below the average of RPE values with the standard perturbation
at each iteration, which shows the effectiveness of our proposed technique.

Instance| ILP t (s) gap |AIDCH t (s) RPG ARPE||Instance|ILP t (s) gap|AIDCH t (s) RPG ARPE
c18r09a [1325 1443 O 1325 341 O 0 ch0r22a|ns - mnc| 3765 741 nc 043
c18rl0a [1359 1409 O 1359 352 0 0 ch0r23a|ns - mnc| 3783 754 nc 0.31
c18r10b 1344 1526 0 1344 348 O 0 c50r26a|ns - mnc| 3799 759 mnc 0.27
cl8rlla [1378 1886 O 1378 372 0 0 cd50r28a | ns - nc| 3823 783 =nc 0.58
c18rllb {1420 2786 0 1420 401 O 0 ch0r3la|ns - nc| 3947 849 nc 0.52
cl8rl2a {1422 2103 O 1422 391 O 0 cH0rd3a|ns - mnc| 3931 817 nc 0.56
c18r12b 1440 2209 0 1440 413 O 0 ch0r3ba|ns - nc| 4097 831 nc 0.34
c30rlba (1767 - 0.74| 1758 553 -0.51 0.1 |[c70r3la|ns - nc| 4913 943 nc 0.67
c30rl6a (1801 - 1.18| 1811 561 0.56 0.15 |[c70r33a|ns - mnc| 4957 954 nc 0.71
c30rl7a (1818 - 0.44| 1860 582 2.31 0.22 |[c70r37a|ns - nc| 5102 995 nc 0.69
c30rl8a (1834 - 0.11| 1867 593 1.80 0.08 [[c70r40a|ns - mnc| 5151 1034 nc 0.65
c30r19a [1889 - 048] 1934 612 2.38 0.13 |[c70r44a| ns - nc| 5213 1067 nc 0.71
c30r20a (2144 - 12.9| 1947 661 -9.19 0.26 [[c70r47a|ns - mnc| 5557 1113 nc 0.83
c30r2la {1966 - 2.77| 1936 657 -1.53 0.16 |[c70r50a | ns - nc| 5401 1158 nc  0.67

Table 1. Performances of ILP and AIDCH approaches

ILP versus AIDCH

Table 1 compares the results obtained by the ILP solver against those obtained by the AIDCH
approach. In Table 1, ns stands for no solution, nc stands for not calculable, and - shows that the
3600 seconds time limit has been attainted. For the sake of compactness, datasets are grouped by
two then tabulated side by side. Column Instance gives the instance label. The next tree columns,
ILP, t (s) and gap show the performances of the ILP. They report the objective function value, the
computing time and the gap found by the CPLEX solver. Then, the next four columns, AIDCH, ¢
(s), RPG, and ARPE show the performances of the AIDCH approach. They report the objective
function value, the computing time, the gap between the solutions found by the AIDCH approach
and the solution provided by the ILP solver and the average of RPEs over the 10 runs for an
instance.

The ILP approach attains optimal solutions for all n. = 18 instances. It faces difficulty for the
second dataset having n. = 30, however feasible solutions are obtained within the 3600s time limit.
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For the third and the fourth datasets having n. = 50 and n. = 70, the ILP approach fails to find
a feasible solution within the time limit.

For the first dataset, the AIDCH approach succeeded in obtaining all the optimal solutions
found by the ILP approach. We also notice that all the ARPE values are equal to 0: which means
that the AIDCH approach was able to attain the optimal solutions.

For the second dataset, the AIDCH approach attains solutions closed to or better than the
solutions obtained by the ILP approach within a 3600s time limit. For four instances the RPG
values are between 0.56 and 2.38. For the three other instances, the AIDCH approach obtains
better solutions than the ones provided by the ILP approach, with an RPG values from —0.51
up to —9.19. ARPE values are less than 0.26 for all instances which shows the stability of our
proposed heuristic approach for this dataset.

For the third and the fourth datasets, the AIDCH approach was able to find solutions in a
reasonable time. The ARPE values are less than 0.83, the proposed heuristic behaviour is stable
over the last two datasets. Unfortunately, the quality of the solutions found by the AIDCH approach
cannot be assessed since the ILP approach fails to provide solutions for these datasets within the
one hour time limit.

6 Conclusion and future work

We presented in this paper both an ILP model and a AIDCH heuristic to address the real-worl
firefighters timetabling problem (FFTP) of the INFOCA institution. The proposed approaches
were tested over four datasets with different sizes of increasing difficulty that we generated using
real data from INFOCA. The ILP approach obtained optimal or near optimal solutions for the first
two datasets, but it faced difficulty in obtaining feasible solutions for the larger instances of the two
other datasets. The AIDCH approach obtained good solutions for all the instances of the first two
datasets, those are either optimal or closed to the ones obtained by the ILP approach. The proposed
heuristic approach was able to find feasible solutions for the larger instances within a reasonable
computation time. Future works aim at investigating a metaheuristic solution approach to improve
the quality of the solutions obtained over the datasets and aim at reducing the computation time.
We also plan to obtain lower bounds for the larger instances for comparison purposes.
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Abstract. This paper deals with a complex production planning problem with lost sales,
overtimes, safety stock and sequence dependent setup times on parallel and unrelated ma-
chines. The main challenge of this work is to propose a solution approach to obtain a good
feasible plan in a short execution time (around 2 minutes) for large industrial instances. We
develop a genetic algorithm that combines several operations already defined in the litera-
ture to solve the problem. Preliminary numerical results obtained with our algorithm are
presented and compared to a straightforward MIP resolution. The method appears to be an
appealing alternative on large instances when the computational time is limited.

1 Introduction

The problem presented in this paper is related to practical cases encountered in the food industry
for production planning. In this context, manufacturers can generally use several production lines,
each able to make several types of items. This complexity usually leads to problems that are too
large to be solved optimally by off-the-shelf solvers. In addition, the models we consider in this
paper also combines constraints from the lot-sizing and the scheduling literature, by assuming that
the setup times between different types of items depends on the production sequence. This further
limit the applicability of standard methods in practice, when the planners need to obtain "good"
feasible solutions in reasonable time to test several machine configurations or shifts assignments
and obtain quick insights to support their decisions.

This problem extends the field of lot-sizing, which has been extensively studied since the work
of Wagner and Whitin [1]. Motivated by the physical constraints found in practical applications,
the finite production capacity version of the problem (CLSP) has received a lot of attention, see
[2] and [3] for a review of extensions and solution approaches. The problem we consider is an
extension of the industrial problem with lost sales and shortage costs presented in [4], for which
the authors introduce new classes of valid inequalities. The safety stock is seldom considered in
the deterministic production and inventory literature. [5] define the safety stock as a lower bound
on the number of units that must be held in the inventory at each period when [6] choose to
penalize the missing units from the safety stock. The latest version is studied here. Versions of the
problem with parallel machines and sequence dependent setups are less common in the literature.
[7] develop new heuristics on a parallel machines problems. [§8] present an industrial problem in
which setup times depend on the sequence of production and propose a solution procedure based
on subtour elimination and patching. [9] use a small bucket formulation to compute the sequence
of production. [10] also present an extensive review of this extension and compare the efficiency of
several methods to solve it. The possibility to exceed the production capacity is not common in
the literature, see [11] for an overtime extension of a capacitated lot-sizing problem.

In terms of metaheuristics, various researches have been done on the previously detailed exten-
sions of our problem. [12] propose a Genetic Algorithm (GA) to tackle a multi-items CLSP and
on multiple production lines, using various crossovers and mutation. The authors also use a new
operator called "siblings" that consists in a local search using a ranking system on the neighbours.
[13] propose a Tabu-Search (TS) to solve the same problem. [14] and [15] propose hybridized GA
to solve the CLSP with an overtime constraints. The hybridization introduces elements of Tabu-
search and Simulated Annealing into the GA in order to improve the efficiency of the algorithm.
On top of that, they also use multi-population on different version of the algorithm to tackle their
instances. On the single-machine CLSP with sequence dependent setup times, [16] and [17] propose
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a Threshold Accepting whereas [18] develop a Tabu-Search and [19] propose a GA. To the best
of our knowledge however, none of the previous problems incorporate a target-stock constraint
similar to our case.

In the following, we denote CLSSD-PM the multi-item capacitated lot-sizing problem with lost
sales, safety stock, overtimes, and sequence dependent setups on parallel machines. A previous work
in [20] focus on a part of this problem without safety stock. To the best of our knowledge, this
whole problem has never been studied in the literature before.

2 Problem Definition

The CLSSD-PM is a extensive version of the capacitated lot-sizing problem which is proven to be
NP-hard ([21]). The goal is to plan the production of N different items, over T' time periods and
on M parallel unrelated production lines. There is a demand d; for each item i € {1,...,N} in
each period ¢t € {1,...,T} that must be satisfied if units of ¢ are available in stock. When that is
not the case, the demand can be (partially or totally) lost, incurring a per-unit lost sales cost [¢.
Any production of item ¢ in period ¢ on line m € {1,..., M} is an integral number of batches, i.e.
a multiple of a fixed quantity @° of units. The production of one such batch incurs a cost p¢,, and
requires a production time 7% . In addition, the production of items of type k immediately after
items of type i # k during a given period on machine m induces a setup time .

Each line m at each period t has a (planned) time capacity of C,, but production overtimes are
allowed up to a maximum total production time C,,;. When production occurs during the planned
capacity, the corresponding cost of line usage is ¢,,; per unit of time, but this cost increases to
Cmt + Cmt when the production needs overtime, i.e. for any usage that exceeds C,.

We model item storage by the mean of a target stock S;; for each item 7 in each period ¢. Any
unit of stock of i in period ¢ that exceeds S;; induces an excess storage cost of h;;, while missing
inventory to reach the target stock incurs a per-unit penalty equal h,.

We also make the following hypothesis on our problem :

— Demand and inventory are satisfied and consumed following a FIFO rule. This implies that it
is impossible to choose to loose some demand of an item that is held in stock.

— Setup times between items follow the triangle inequality rule.

— At the beginning of each period, each line is in a neutral state, and the setup time to start the
production of the first item in any period is null.

The objective of our problem is to minimize the total cost of the production planning (line
usage, production, storage and lost sales combined). For conciseness reasons, we do not present
the MILP formulation here and instead refer the interested readers to the [22].

3 Genetic Algorithm

We now develop a genetic algorithm to address the CLSSD-PM. We start by introducing the gen-
eral structure of the procedure, before presenting in mode details the chromosome representation,
crossover and mutation operators.

3.1 Genetic Algorithm Pseudo-Code

We use a generational genetic algorithm (GA), which creates successive generations of a population
of individuals, by using specific operators inspired by nature and called crossovers and mutations.
We keep some overlapping between consecutive generations, i.e. some of the best elements ob-
tained in the current population are retained for the next generation, to keep the most interesting
information of what has been done in previous iterations.

To avoid being in a local optimum for too long, the algorithm sometimes performs a reset that
re-generates randomly a large portion of the current population. This operation is done only after
a long period without improvement of the best known solution. A pseudo-code of the procedure is
presented in Algorithm 1.
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Algorithm 1: Genetic Algorithm

1 curGen < GeneratePopulation() ;
2 s* < bestIndividual ;
3 while stopping criterion not met do

4 nextGen < overlap(curGen);
5 while /nextGen/ < mazPopSize do
6 if condCrossover then
7 parentl, parent2 < selectionCross(curGen);
8 nextGen.add(crossover(parentl, parent2));
9 end
10 if condMutation then
11 mutated < selectionMutation(curGen);
12 nextGen.add(mutation(mutated));
13 end
14 end
15 if condReset then
16 | reset();
17 end
18 if cost(nextGen.bestIndividual) < cost(s*) then
19 ‘ s* < nextGen.bestIndividual ;
20 end
21 curGen < nextGen ;
22 end

23 return s*

3.2 Chromosome representation

The problem requires two type of decisions: The first one assigns the production of items to periods
and machines, while the second one aims at designing the production sequences. As a consequence,
we propose the following independent variables that serve as chromosomes:

— Zme: Set of tuples ( item ; quantity ) produced on m during ¢.
— Wy Contains the ordered sequence of production on m during t.

Other necessary information to represent a solution are deduced from these two variables, using
the dependent variables below:

— cost: Total cost of the solution.

— Ume: Time usage of line m in period t.

— prod:: Number of batches of 7 produced in period ¢.
stocki: Stock of item i available at the end of period t.
Li: Number of lost sales for item 4 in period t.

To ensure diversity within the population, we start a completely random chromosome genera-
tion. For each line in each period we draw randomly a subset of items and affect to each of them a
random production quantity. The sequence is determined as the items are drawn. Since the goal is to
minimize the objective function of our problem, we keep a fitness parameter fitness = m
updated to ensure that the gaps between the costs of different solutions are proportional. Finally,
the selection is made based on a roulette wheel mechanism, applied to the fitness of the population.

3.3 Crossover

In order to explore a large variety of solutions, we apply several crossovers from one generation
to the next, in a similar fashion as the GA presented in [12]. In our case, we have three different
crossover :

— On periods.
— On items.
— On sequences.
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Crossover on periods. This crossover is heavily inspired by [12]. It basically consists of a two-
point crossover applied on the periods of the solutions. The concept is to choose randomly a subset
of periods and exchange all the production quantities of the two parents in the selected periods.
Table 1 illustrates a crossover on periods 3 and 4.

Table 1. Illustration of the period crossover

t1 t2 t3 t4 t5 tl t2 t3 t4 t5 t1 t2 t3 t4 t5 t1 t2 t3 t4 t5

il R |

Crossover on items. This crossover is inpired by [12] For a given machine m and a given time
period ¢, this crossover iterates following the item information stored in the chromosomes x.,; of
both parents. For each m and ¢, we consider the union the items produced by the two parents and
draw for each of them a random boolean. If we draw 0 then the first child takes the first parent’s
production, and the second child takes the second parent’s. Otherwise the first child takes the
second parent’s production, and the second child takes the first parent’s. Table 2 shows a practical
example of this crossover for a given period and line.

Table 2. Example of item crossover for a given period and line

item 11413
Parent 1 | ity [15[13[9
item | 2|9 |4
Parent 2+ antity | 17|10(5

union items |[1{4[3(2(9
random draws

Union and random draws :

—_
—_
o
o
[«

item 4|3
quantity|5(9

Child 1 :

Ut

item |1/4]2]9
quantity|15/13{17(10

Child 2 :

Crossover on the sequences. This crossover is inspired by [19] This crossover enables us to
change the sequence of production. For each line and in each period, we form the set containing
the common items from the two parent solutions. We then create a new sequence in the following
manner:

1. Draw a random integer X between 1 and the number of common items

2. Order the X first item as they are in the sequence of the first parent. The remaining items
follow the same order they have in the sequence of the second parent.

3. Create the sequences of the children using the parents sequences in which the common items
are reordered.

Table 3 shows a practical example of this crossover for a given period and line.

3.4 Mutation

We consider a mutation that swaps the positions of two randomly selected items in the sequence of
production, as represented in Table 4. As we also do not want to alter the totality of the individual
we will add a parameter to describe the amount of of information that will be altered in a mutated
individual.
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Table 3. Example of sequence crossover for a given period and line

Parent 1 : lsequence[1[2[3[4[5[6[7[11‘

Parent 2 : [sequence[10[9[8]7]6]5[4]3]

Intersection : ‘common items‘3‘4‘5‘6‘7‘

Random number draw X : 3

Order of the first X items on parent 1|3|4|5
Order of remaining items on parent 2|7(6

Order from the parents :

New order : ‘New order‘3‘4‘5|7‘6|

Child 1 : [sequence[1[2[3[4]5]7[6]11]

Child 2 : [sequence[10[9[8[3]4]5]7[6]

Table 4. Example of a mutated sequence on items 2 and 6

sequence before mutation|1(2(3]4|5(6
sequence after mutation |1/6|3|4(5/2

3.5 Repair

Note that such movements may result in infeasible solution since some line usage may exceed its
maximum capacity. When this situation arise, we repair them by removing the production of one
or more items until we don’t exceed the hard capacity anymore and then replace it if possible
on previous periods. In order to have a minimum impact on the quality of the solution, we chose

. . . . dl
to remove the item having the highest ratio —Z-ot
demand;,

The quantity the remove in order to make the period feasible, is stored and will be spread on the
previous periods where the item was already in production.

so that we can avoid most of the lost sales.

4 Experimentation Results

The instances that we use for our numerical experiments are derived from practical applications
defined by VIF, a software company specialised in solutions for the food industry.

4.1 Parameters

Our algorithm is tuned through 9 parameters that have been tested to choose the best possible
values.

Size of the population: 200 individuals.

Number of generations: 15000 generations, limited to 2 minutes of execution.

Percentage of overlapping population between generations: 10%.

— Percentage of rested population: 50%.

— Number of non-improving iterations needed to reset: 200.

— Crossover ratio: 90%.

— Mutation ratio: 10%.

Percentage of information of an individual that will be mutated: 20%.

Ratio between the different crossovers: 60% period crossover, 20% item crossover, and 20%
sequence Crossover.

4.2 Experimentation

Implementation and tests of the algorithms have been done in Java. Tests have been realised on a
personal computer with the following characteristics :

OS : Ubuntu 18.04.4 LTS
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Processor : Intel i5-7600K @ 4.200GHz x 4
GPU : NVIDIA GeForce GTX 1070

RAM : 16 Gb

Type : 64-bit

We tested our GA on 168 instances that combine the following parameters: Number of items
€ {20, 30,40, 50, 75,100, 125}, number of lines € {1,2, 4,6} and number of periods € {15,30}. The
lower bound and upper bound considered are based on the results computed by CPLEX in 4
hours using a MIP formulation of the problem. We compare our results with the best lower bound
(LB) obtained by CPLEX using settings presented in [22] and compute the gap achieved by our
procedure with the following formula:

GA.cost — LB
e —— 1
Gap 5 x 100

4.3 Results

We tested the GA presented in this paper with a maximum computational time of 2 minutes
and compared the solutions obtained with the ones found by CPLEX in 4 hours. Note that the
latter are used as a baseline and do not represent a viable option for practitioners to do its large
computational time. In fact except for the smallest instances, CPLEX rarely even finds a feasible
solution within 2 minutes, which already gives the GA an edge in the specific application that is
targeted. In addition we observe that in 45 out of the 168 tested instances, our GA obtains a better
solution in 2 minutes than the one obtained by CPLEX in 4 hours. The distribution of these 45
instances is as follows:

0 case for 20 items.

1 case for 30 items (0 for 15 periods, 1 for 30 periods).

7 cases for 40 items (0 for 15 periods, 7 for 30 periods).
— 10 cases for 50 items (2 for 15 periods, 8 for 30 periods).
— 9 cases for 75 items (3 for 15 periods, 6 for 30 periods).
11 cases for 100 items (7 for 15 periods, 4 for 30 periods).
7 cases for 125 items (5 for 15 periods, 2 for 30 periods).

The table 5 compares the gaps obtained by CPLEX and our GA on groups of 6 instances of
same size. For each group we retain the minimal gap obtained, the maximal gap and the mean gap
for all 6 instances.

This table also shows clearly the great differences that can appear between solutions found by
CPLEX on 2 instances of same size (example for instance of size 50-1-30 where we have a minimal
gap of 292% and a maximal gap of 14 145%) whereas our GA shows closer values (min : 999%, max
: 3453%). In general, the consistency of the results obtained by the GA is better across instances
of the same size: In particular it appears that the solutions from CPLEX seem more sensitive to
the number of periods that our procedure. Even if the results obtained by our GA are far behind
the ones obtained by the MIP for the smallest instances, they become competitive on larger ones.
For the largest instances, our heuristic consistently outperforms in 2 minutes the feasible solution
computed by CPLEX in 4 hours.

These results clearly demonstrate the tendency of metaheuristics, in this case a genetic al-
gorithm, to deal quickly with complex problems, and their usefulness in practice to tackle large
industrial instances compared to MIP formulations and commercial solvers. Finally, note that the
two approaches can also be used in combination, where the solution find by the GA can serve as
a first feasible solution for the MIP solver, in an attempt to speed up the its convergence towards
an optimal solution.

5 Conclusion

In this work, we apply the well-known genetic algorithm paradigm to develop a dedicated algorithm
that is able to run quickly on large industrial instances of a complex practical production planning
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Table 5. Comparison of gaps obtained by CPLEX (4 hours) and our GA (2 minutes) by group of same
size instances

Instances CPLEX Gap(%) GA Gap(%)

items-lines-periods Min Max Mean Min Max Mean
20-1-15 0.1 4.1 1.7 381.9 625.8 534.0
20-1-30 1.8 19.9 8.9 492.1 836.4 731.4
20-2-15 0.1 10.0 2.5 258.0 520.3 374.2
20-2-30 2.4 13.2 7.0 527.8 1108.7 707.8
30-1-15 1.5 12.0 5.0 602.4 1203.1 907.3
30-1-30 0.8 1163.3 277.1] 1000.8] 19119 1 243.8
30-2-15 1.8 18.8 9.5 513.2 1122.8 792.2
30-2-30 74 544.4 190.9 379.9] 1298.2 975.5
40-1-15 7.6 75.1 40.2 685.7 1471.5 1 094.8
40-1-30 533.8| 2853.7| 1198.4 685.0 22454/ 1 352.4
40-2-15 6.0 789.9 145.7 391.5| 1553.2 1 025.3
40-2-30 3222 7127.8) 3177.8 640.1| 1768.2| 1 383.7
50-1-15 83.0] 35734 842.4 968.8| 1778.6| 1 411.2
50-1-30 292.0| 14 1454 4 063.2 998.6 3 452.6 2 033.9
50-2-15 4.9/ 1305.0 735.0/ 1014.6] 15985 1 351.5
50-2-30 530.9 42778 2 543.6| 16814 2 312.7 1914.2
75-2-15 774.5 2 811.1 1713.8] 2070.9 3 459.9 2 891.2
75-2-30 432.6| 6 829.5 2 79.3| 21399 4518.3| 3 328.3
75-4-15 464.6 2 134.6 1744.8] 1883.3 3 079.3 2 582.1
75-4-30 3141.6| 7866.4| 4537.1| 1912.0{ 42815/ 3 387.3
100-2-15 1163.1 48244 2 494.2| 20554 5 426.2 3 864.5
100-2-30 4406.2| 86089 6 371.8) 3921.6/ 5789.1| 4 449.2
100-4-15 742.3 5 212.6 2 569.0| 2 787.8 4 .832.3 4 034.2
100-4-30 3243.8| 68439 5090.9| 42731 60179 5 241.9
125-4-15 3126.3| 11 547.6| 5 756.7| 39459 6 101.4] 4 935.5
125-4-30 4960.9| 19 640.6)] 8 306.3| 5 348.4| 7110.8/ 6 402.2
125-6-15 2437.1| 6862.7| 4 358.6| 3169.0f 6314.2| 5 301.0
125-6-30 5021.4| 17 563.0 7 579.5| 5 423.7 7 130.9 6 295.3
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problem. The main contributions of this study can be partitioned in two broad categories. First,
the heuristic developed is the first one that takes into account several industrial extensions of
classical lot-sizing problems, such as the combination of multiple unrelated machines and sequence-
dependent setup times. Second, it provides a viable alternative to commercial solvers to deal with
large industrial instances that displays a robust behavior with respect to the size of the problem
considered. Note that the solution obtained using our procedure may serve as a warm start for an
exact method.

While the first results obtained show that such metaheuristics are a viable alternative on large
instances, additional work is necessary to improve the overall performances. In particular, the
method would become a lot more reliable if the solutions on small instances were comparable to
the ones computed by commercial solvers. Local search methods or more advanced concepts such
as hybridization or multi-population could help reduce the gap in such cases. We could also seek
to find dominance properties to reduce the search space and speed up the resolution.

Another research direction to achieve this goal is to apply the procedure to a simpler problem
that approximates the original one. In a recent paper [22], we developed a procedure that computes
clusters of items with small switching times, which enables the algorithm to primarily focus on
positioning clusters in the production sequence rather than items. This approximation greatly
reduces the size of the original problem and was proven successful when used in combination
with classical heuristics from the lot-sizing literature. It is likely that the GA presented in this
paper would also benefit from this reduction of the problem size to converge faster to good quality
solutions.
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Abstract. The influence maximization problem (IM) is an open problem in graph theory,
and also is identified as a NP-hard, so there has been a lot of developments in order to
solve or approximate a solution. In this paper, we present an approach for pointing to a
solution of the IM problem, by leveraging k-shell decomposition analysis, and combining it
with a Physarum-inspired model. Additionally, this procedure was tested on five data-sets
both synthetic and real, showing encouraging results.

1 Introduction

Social media is a global phenomenon that changed our lives forever, altering the way we see
the world and also is a phenomenon that has an important influence in our opinions, ideas, and
decisions. They are an important and fundamental way of expressing ourselves to the world. For
2020, it is estimated that 3.8 billion of users worldwide are using actively social media, that is the
84% of overall web population [1].

Studying social media is an important field of interest to researchers of various fields such as
sociology, psychology, mathematics and computer science. The study of social media is important
because this is an information goldmine for advertisers and reaches a very wide audience, providing
additionally a lot of personal user data.

One successful strategy adopted for dissemination of information and products are the so-called
influencers. They are Internet personalities, quite popular with a lot of followers, and consequently
called “opinion leaders”. The concept of influencer is created around the idea of influential mar-
keting, which identifies people with a lot of influence over potential buyers, and all the marketing
is constructed around these influencers [2].

From a computer science viewpoint, the identification of influencers is an instance of a bigger
problem, called influence maximization on graphs (IM). This problem is an open problem in graph
theory [7], and is identified as a NP-hard problem (a problem whose solution can not be com-
puted with a polynomial-time algorithm), so there have been several proposals in this area, with
new algorithms and heuristics for approximating a solution [3]. Note that those proposals have
limitations, either with the size of the instances that they can solve or with the graph topologies.

One of the newest and interesting approaches is that based on a biological being and its behavior
in the natural habitat. This organism is Physarum Polycephalum, and scientists are interested on
it because of its intelligent behavior, lack of a central brain, and also given that can solve a maze
to find food and nutrients [4]. Also, it can optimize energy consumption when transfering nutrients
into its body, so it can solve problems like the optimal traffic network problem [5].

In this paper, we present an approach for solving the IM problem, by leveraging k-shell de-
composition analysis, and combining it with a Physarum Polycephalum model. The k—shell de-
composition is an useful technique because it performs an initial selection of nodes with a high
degree (and potentially high propagation ability), and then the Physarum Polycephalum model is
employed for evaluating nodes and determines which nodes are the most influential.

The contributions of this paper are: a new procedure for obtaining the influential nodes in
a social network graph by using k—shell decomposition in conjunction with a Physarum model.
Additionally, this procedure is tested on both synthetic and real data-sets. This is of importance
as a part of an approach for solving the IM problem using a bio-inspired algorithm.

This paper is organized as follows. Section 2 shows some related work for both the IM problem
and some developments with Physarum Polycephalum. In Section 3, we show the theoretical basis of
the IM problem, k—shell decomposition, the Physarum model, and the employed degree index. The

66



2 A.O. Lopez-Garcia, G. Rodriguez-Gomez, A. Lopez-Lopez

proposed method is shown and expanded on Section 4. Section 5 details the data-sets, experiments
and results of our approach. Finally, in Section 6 we provide our conclusions and future work.

2 Related Work

When first computer networks were created, their high potential for communicating with people was
perceived, since distance was no longer a limitation for communicating with friends and relatives
overseas. In particular, the massification of the Internet in 1995 [6] catalyzed the development of
new online platforms for communicating with friends, one of them was the social networks.

A social network service is an Internet platform, employed for creating networks or relationships
among people with similar interests. In addition, such platforms allow to create friend lists and
meet new people. Examples of social networks are Facebook, Twitter, QQ, or TikTok. A social
network can be modeled as a graph, since this is based on establishing relations among people, and
they, at the same time, can also have their own friends. So, we can build a huge graph of people
connected by their relationships. Each node is a person, and each vertex represents a given relation
(e.g. friendship, or con-generic) between two. Open problems in social networks [7] are: community
detection, recommendation systems, trust prediction, opinion mining, and influence maximization.

Influence maximization (IM) was formulated by Kempe et al. [3], as a combinatory optimization
problem (i.e., we need to search a near object from a finite object set), also proposing a greedy
algorithm for solving it. This algorithm is initialized with an empty seed set, and then searches for
nodes that maximizes influence. The downside of this algorithm is that on big graphs, computing
time grows fast, because of the number of calculations needed. Kempe et al. identified two diffusion
models: the Independent Cascade (IC) and Lineal Threshold (LT) [8].

Leskovec et al. [9] proposed a new algorithm called Cost Effective Lazy Forward (CELF), and
it promised faster speed (marginaly) on solving the problem, compared to the traditional greedy
algorithm. This algorithm is based on the modularity function of the diffusion model, so it can
select nodes faster and more precisely. Also, the algorithm can prevent unnecessary calculations
for diffusion, so is faster than the traditional greedy algorithm [10].

CELF also has its own limitations, so Goyal et al. [11] proposed an improvement on this
algorithm, called CELF++, showing an increase of 35 — 55% of performance, compared to CELF.

On other line, scientists have been trying to solve IM from an heuristic approach with algorithms
such as Local Directed Acyclic Graph (LDAG), proposed by W. Chen et al.[12] This algorithm only
works with LT diffusion model, but the authors argue that an improvement in time is achieved,
decreasing it from hours to seconds (or from days to minutes).

Other important heuristic is PageRank, developed by Larry Page for the Google search engine
[13], adapted for the IM problem by Li Q et al. [14], calling it Group-PageRank. This algorithm
only works on graphs with IC diffusion model. The original idea of PageRank is that each node of
the graph is given a score, according to a probability of being activated by a user on the web [10].

The Physarum Polycephalum approach is a recent development in bio-inspired computation.
Adamatzky et al. [16] proposed one of the earliest problems solved by this model, which was facing
the optimization of traffic network. But also Physarum Polycephalum model has been explored for
solving other problems such as solving mazes [17], the Steiner tree problem in networks [18], the
graph coloring problem [19], among other graph-related tasks [20].

As part of our bio-inspired optimization Physarum-based approach, there are some related
works, such as that proposed by Gao C. et al. [21], who developed a new method for obtaining
the centrality degree of a node, which is important for establishing how probable a node is going
to be influential in a social network. This new centrality degree is called Physarum centrality,
based on properties of Physarum Polycephalum, and also is supported by k—shell decomposition
for identifying nodes. This algorithm tackles both weighted and unweighted networks.

3 Theoretical framework

A social network is a structure formed with entities and a group of 2—way links among them (for
example, friendship or family relationships). A social network can be modeled as a graph G both
directed or undirected, and weighted or unweighted.
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3.1 Influence Maximization

An open and important problem in graph theory is influence maximization (IM) [7]. This problem
has been studied and showed to be NP-Hard [10], indicating that is a problem that does not have
a verification algorithm in polynomial time.

A social network is studied and represented as a graph G = (V, E), where V is the set of nodes
in G (e.g. users), E is the set of edges in G (the relationships between the users). The aim is to
find the set of users with the maximum influence in G [10].

IM is an optimization problem, which consists in maximizing the spread of information or
influence in a social network graph. Formally speaking, according to [10]:

Definition 1. Given a social graph G = (V,E) and a user set S C V, a diffusion model M
captures the stochastic process for S spreading information on G. Influence spreading of S, denoted
as g m(S), is the number of expected users influenced by S.

Definition 2. Given a social graph G = (V, E), a diffusion model M and a positive integer k,
influence maximization selects a set S* of k users of V as a seed set for mazximizing influence
diffusion, such as S* = argmaxgcya|sj<k 0G,M(S)-

For the IM problem there are various diffusion models, but the most common are Independent
Cascade (IC) and Lineal Threshold (LT). The aim of these models is to associate each user in G
a status (i.e active or inactive) and the conditions of activating or infecting them. Independent
Cascade (IC) states that there is a probability of infection for each edge, namely P;;, where P is the
probability of i infecting j. Once j is infected, it can infect neighbours on the next step, according
to the probability assigned to next edge. Linear Threshold (LT) is different, because each node is
infected if neighbour nodes are infected by reaching a threshold, according to their weights [22].

3.2 K-shell Decomposition

K —shell decomposition is a technique for decomposing and studying the structure of large graphs.
This method is also noted for showing the importance of certain nodes in regards of their hierarchies.
The following concepts are basic for this decomposition, as given by [23].

Definition 3. The k—Core of a graph G is the mazimal subgraph of G having minimum degree at
least k.

Definition 4. The k-Shell of a graph G is the set of all nodes belonging to the k-Core of G but
not to the (k+1)-Core.

The k—shell index of a node is denoted as K.

Kitsak et al. [24] proposed the use of k—shell decomposition as a means for identifying node
spreaders in a graph network. So, the higher the k—shell index of a node, the more it can spread
information in the network. The k—shell decomposition works better on static networks, where
topologies do not change over time [23].

3.3 Physarum model

Our model for Physarum Polycephalum is based on the works of Z. Cai et al. [5] and Gao C. [21].
This model simulates the foraging behavior of Physarum Polycephalum. Its body is a single cell
made up of interconnected tubes forming networks, that can stretch from centimeters to meters,
and can store and recover information when searching for food. [15]. On laboratory experimental
setups, the model consists of a Petri dish, a map (usually made of agar), external food sources
(usually oat flakes) and a live Physarum [16].
Physarum Polycephalum consists of the following components [5]:

1. Plasmodium and Myxamoebas: The plasmodium is the moving part of the organism, and
the tentacle-shaped myxamoebas are the deformed part of the plasmodium. They are used for
foraging and consuming food and nutrients, and expand and contract accordingly.

2. Nucleus: The nucleus is the central and critical part of the organism, which moves and feeds
around it.
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3. Nutrients: They are the source of energy, and come from external food sources.

These all parts work collaboratively in order to solve problems, and the solving process includes
two stages: food searching, and feeding [5]. The first stage is when the myxamoebas start growing
around the nucleus in order to find external food sources. The second stage is when the myxamoebas
contract in order to transport all the found nutrients into the Physarum’s body. In terms of
optimization, these two stages correspond to exploration and exploitation of the search space.

Multiple myxamoebas m grow around the nucleus, by expanding in multiple directions [5]. This
growth is constrained by the topology of its environment, and in our case the topology of the social
network graph, i.e. its adjacency matrix, which is a time-varying structure, denoted as follows:

n= [#ij(t)]7LX?L (1)

where p;; = 1 when there is a direct edge from node i to j, or u;; = 0 otherwise.
Another important part of our model is the nutrient concentration matrix on the edges, which
is also a time-varying structure, and defined as [5]:

T(t) = [Tij (®)]lnxn (2)

There are two operations related to nutrient consumption, namely the enhancing operation (A > 0)
and the decreasing operation (o > 0). The first one is used to simulate the nutrient transportation
through the Physarum body, and the latter is intended to simulate the nutrient consumption by
other life activities [5]. The nutrient concentration on each edge is updated at time ¢ and m number
of myxamoebas, with the following formula:

m

mig(t) = mipt = 1)+ >l (DAL () = D ok 3)

k=1 k=1

S

3.4 Node selection by propagation capability

One detail to observe is that node selection is correlated with identifying the importance of each
node or edges on the social network graph. There are various node indices for doing this selection,
namely the degree of a node, the importance degree index, the closeness index, the betweenness
degree index, and the redundancy rate index, among others [22].

In our research, we employ the betweenness index, since this considers the myxamoebas passing
through node i and reaching outer nodes, and that is critical for information spreading. Betweenness
measures the extent to which a node lies in the path between others, so it can measure the influence
a node has over the spread of information through the network [28]. The betweenness index takes
into account the number of myxamoebas passing through node 4, so the more of them go by, the
more important node 7 is.

Let Aj, be the number of myxamoebas from node j to k passing through a node i. The be-
tweenness index Bt; of a node i can be calculated as [26]:

Bt; = iim (4)

j=1k=1

In a social network with n nodes, at most n — 1 neighbor nodes can connect to a node i, so the
betweenness degree index of a node ¢ is calculated by:

Bt;
Bt = —=——— (5)
Zj:l Bt;

In consequence, the total betweenness index of all the myxamoebas can be calculated by:

By =S BR; (6)
k=1
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4 Proposed Method

Our proposed method follows most of the steps proposed by Gao C. et al.[21], in which they apply
a Physarum model based on a Poisson equation, and after that, they use k—shell decomposition
for calculating the called Physarum Centrality. However, we employ the method used by Z. Cai et
al.[5], in which the most important part of the model are the growth of the myxamoebas and the
nutrient consumption by the organism.

The first step is to initialize the procedure, having the social network graph G = (N, E) as
the only input parameter. So the adjacency matrix u is defined in this first step (see expression
(1)). Then, thereafter there is a n X n matrix, with n being the total number of nodes in the social
network graph G.

The nutrient matrix concentration 7 at starting time is a zero matrix of size n x n (with n
being the total number of nodes in the social network graph G), since at the start time there is no
nutrient flowing through the body of the organism.

The increment (A) and decrement (o) parameters are also initialized, with the constraints of
A >0, 0 > 0, and following the rule of thumb A > o, given that the nutrients consumed should
be higher than the nutrients consumed for growing and foraging.

Once all the parameters are initialized, we proceed to compute the k—shell decomposition on
the social graph G, for obtaining the K value for each node. This process basically consists on the
following [25]:

def kShell (G):

h = G.copy ()

it =1

tmp =[]

buckets = []

while (1):
flag = kShell_check (h, it)
if (flag = 0):

it +=1
buckets.append (tmp)
tmp = []

if (flag = 1):
node_set = kShell find_nodes (h, it)
for each in node_set:
h.remove_node (each)
tmp . append (each)
if (h.number_of nodes() = 0):
buckets.append (tmp)
break
return buckets

Once each node has its K value, the nodes with higher index value are selected to function
as nucleus and grow myxamoebas, so the next step is grow the myxamoebas on the whole social
network graph G. Each nucleus can grow m number of myxamoebas on it, depending on the
topology of the social network graph G. This m number of myxamoebas for each nucleus can be
determined as follows:

K, if K4 <5
= 7
mn ’VKS-‘, otherwise (™

2

where K is the k—shell decomposition index value of the selected node acting as the nucleus. The
idea is to explore as many connecting paths as possible when the nodes are not highly connected
but administer resources when the node is heavily connected.

For growing the myxamoebas, a recursive function is applied, with the following parameters:
the adjacency list u, the node acting as nucleus, the number of m myxamoebas, and an array used
for keeping track of the visited nodes. This function is defined as follows:
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def growMyxo(adjList , node, totalMyx, visited=][]):
neighbours = getNeighbours(node, adjList)
if (totalMyx>=len (neighbours)):
selected_nodes = neighbours
else:
selected_nodes = random.sample(neighbours, totalMyx)
for i in range(0,len(selected_nodes)):
if (not selected_nodes[i] in visited):
visited .append(selected_nodes[i])
growMyxo(adjList , selected_nodes[i], totalMyx,
visited)
return visited

This function returns all the visited nodes by the myxamoeba while searching for food, and the
nutrient matrix is updated according to the expression (3).

The feeding stage of the organism consists of a loop iterating over the m myxamoebas while
updating the nutrient concentration matrix with (3). The more myxamoebas pass through a node,
the higher concentration of nutrients this will have, and that will be reflected on the nutrient
matrix 7.

After the feeding stage, the betweenness degree index of each node of the myxamoebas grown
on the selected nucleus will be calculated using expression (5).

For output of the procedure, the total betweenness degree index for all the nodes on the social
network graph G is calculated by formula (6).

5 Experiments and Results

Five experiments were done in order to validate the proposed approach, using two synthetic ex-
amples and three real data-sets from social network graphs.

For running the experiments, the number of myxamoebas assigned to each social graph was
defined by (7). For each data-set, the particular defined value is detailed later on. The total number
of iterations for the feeding stage was set to 10. Since each myxamoeba grows differently in each
run, the method was run 10 times on each data-set, and then average and standard deviation were
calculated.

5.1 Synthetic data-sets

The first synthetic graph is based on the graph used in [21] and this has 15 nodes and 21 edges,
with a density value of 0.2. The reported maximum degree of a node is 6, shown in Fig. 2. For this
graph, the m value was set to 3.

To illustrate the process of growing myxamoebas to explore the first graph, Figure 1 includes
two examples of sub-graphs obtained when taking two different nodes as nucleus.

The results of running our method on the first synthetic graph are shown on Table 1. For
comparison, we report also the Physarum centrality index (Ck,) as described in [21]. The Top-4
nodes selected by the Physarum centrality are the same as those selected by our method, showing
that nodes 7, 11, 12 and 5 have the potential of spreading the information the most in the social
network graph. Also the table shows that the nodes with the least propagation ability are again
the same (nodes 0, 1, 3 and 2).

The second synthetic graph is based on the graph employed in [8], having 8 nodes and 20 edges,
with a density value of 0.444. The reported maximum degree of a node is 8, as shown in Fig. 3.
For this second synthetic data-set, the value of m was set to 2.

The results of running our method on the second graph are shown in Table 2. As we can notice,
nodes 0 and 1 are reported as those having the best capability to spread information, and they
are also the nodes selected by the CELF algorithm in [8]. The topology of this graph shows that
nodes 0 and 1 are the best spreaders, since this is pretty clear because they are in the center and
have the most outer connected nodes.
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Fig. 1. Examples of growing myxamoebas on graph of Fig. 2. The graph on the left had node 11
as nucleus, and the graph on the right took node 5 as nucleus.

Node|B.d.i. (avg.)|Std deviation| Ck,
5 0.350 0.018 0.265
7 0.350 0.018 0.113
11 0.350 0.018 0.182
12 0.350 0.018 0.093
8 0.347 0.018 0.052
9 0.347 0.018 0.031
10 0.340 0.019 0.038
13 0.320 0.017 0.064
14 0.310 0.023 0.011
6 0.241 0.029 0.024
4 0.196 0.029 0.084
0 0.177 0.026 0.011
1 0.133 0.026 0.011
3 0.114 0.024 0.011
2 0.077 0.035 0.011

Fig. 2. Network with 15 nodes and 21 edges. Table 1. Selected nodes for graph
After k-shell decomposition (K = 3), nodes 5, shown in Fig. 2 ordered by between-

7, 11 and 12 are selected ness degree index (B.d.i.)
Node|B.d.i. (avg.)[Std deviation
0 1.086 0.018
1 1.086 0.018
4 1.024 0.026
8 1.024 0.026
2 0.986 0.038
6 0.971 0.024
3 0.933 0.025
7 0.986 0.038
5 0.971 0.024
9 0.933 0.025

Fig. 3. Network with 8 nodes and 20 edges. Dur- Table 2. Selected nodes for
ing the k-shell decomposition, all nodes (0, 1, 2, graph shown in Fig. 3 sorted by
3,4,5,6,7and 8) are selected with Ky = 2 degree index (B.d.i.)
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5.2 Real Data-sets

The first real data-set is the Zachary’s karate club network of 1977, containing the social ties
between the members of a university karate club [27]. This graph consists of 34 nodes, 78 edges
and a density value of 0.139037. The reported maximum degree of a node is 17. This graph is
shown in Fig. 4. Using k-shell decomposition nodes 1, 2, 3, 4, 8, 9, 14 31, 33 and 34 are selected
with K = 3. In consequence, the value for m was set to 3.

The Top-10 results for the karate club network are shown in Table 3, and these are similar to
those reported in [21]. They show that nodes 1, 34, 3, 33 and 14 (in bold in the table) have the
greatest Physarum centrality index, while our method shows the same nodes (except by node 14)
in addition of nodes 2 and 4, are those with highest betweenness degree index.

Node|B.d.i. (avg.)|Std deviation
34 0.403 0.012
33 0.403 0.015
2 0.403 0.012
3 0.403 0.012
4 0.403 0.015
1 0.403 0.006
28 0.389 0.029
24 0.389 0.030
26 0.374 0.017
32 0.374 0.034

Fig.4. Zachary’s karate club social network Table 3. Top-10 nodes for the
graph. karate club graph, sorted by be-
tweenness degree index (B.d.i.)

The second real data-set is the bottlenose dolphins social network, containing a list of links,
where each link is a frequent association between dolphins [27]. This graph consists of 62 nodes,
159 edges and a density value of 0.0840825. The reported maximum degree of a node is 12. This
graph is shown in Fig 5. After k-shell decomposition, thirty six nodes were selected with Ks = 3
(i.e. nodes 1, 2, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18, 19, 20, 21, 22, 25, 29, 30, 31, 34, 37, 38, 39, 41,
42, 43, 44, 46, 48, 51, 52, 53, 55, 58 and 60), so also for this graph the value for m was set to 3.

This data-set, the dolphin social network graph, showed an interesting behavior. The results of
running our method on this graph are summarized in Table 4. After growing the myxamoebas on
all the thirty six nodes selected after the k-shell decomposition, acting as nucleus and performing
the feeding stage, the list of possible influential nodes narrowed down to nodes 15, 21 and 46. An
implementation of the CELF algorithm applied on this data-set, selected nodes 15 and 46.

The third real dataset is the public figures network, gathered from Facebook [27]. This graph
consists of 11.6K nodes, 67K edges and a density value of 0.00100253. The reported maximum
degree of a node is 326. Using k-shell decomposition, 170 nodes were selected with Ky = 41. In
consequence, the value for m was set to 22.

The implementation of the CELF algorithm applied to this data-set, selected 191 nodes. Our
method selected 2963 nodes as top ranked, with a recall of 122 (64%) of those selected by CELF.
The range of standard deviation is between 0.006 and 0.000004. Among the 10 runs of our proposed
algorithm, the ninth showed the best behavior and the second showed the worst. It is important
to note that because of the non-deterministic nature of the approach, this might vary over time.

5.3 Discussion

The experiments on synthetic data-sets allow to verify that the approach was working adequately.
The further validation on real data-sets led to similar results as previously reported or as identified
by a previous algorithm. In all the data-sets, the standard deviation was relatively small, indicating
that most of the executions tend to converge to the same set of nodes.
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Node|B.d.i. (avg.)|Std deviation
15 0,719 0,001
21 0,719 0,001
46 0,719 0,001
38 0,718 0,004
30 0,714 0,003
34 0,713 0,007
43 0,712 0,006
48 0,712 0,008
41 0,711 0,008
39 0,711 0,010

Fig.5. Bottlenose dolphins social network Table 4. Top-10 nodes for the
graph. dolphin graph, sorted by be-
tweenness degree index (B.d.i.)

The approach starts with a k-shell decomposition, which has a complexity of O(n), with n the
number of vertices of the social media graph. Overall the proposed approach has a complexity of
O(un?), where y is the total number of grown myxamoebas, and n is again the number of vertices
of the social media graph. The adjacency matrix is of size n X n, i.e. a square matrix representing
the edges between all the n vertices.

Also, our algorithm has a straightforward implementation for the experiments, so we employed
big matrices for doing all the computation, and this constrains the size of the data-sets. One
improvement can be handling graphs as linked lists, which would demand less memory and work
with larger data-sets.

6 Conclusion and future work

In this paper, a method for obtaining the influential nodes in a social network graph is proposed,
by using k-shell decomposition and by simulating the behavior of a Physarum Polycephalum. The
growth of its myxamoebas and its nutrient consumption are illustrated and used in our method,
in order to filter which nodes are the most influential. After simulating the food searching and
feeding stage, the method will help determine which nodes are the most influential in the social
network graph. For this, the betweenness degree index and the myxamoebas that pass through a
particular node are considered. The experiments showed that the approach was working well and
reached similar results as those reported in earlier works.

The proposed method has to be further tested on larger graphs, but since IM is a NP-hard
problem, we might need to recur to improved computing infrastructure, in order to operate on
such graphs. Also a further complexity analysis has to be done, in order to have a better idea of
the efficiency and applicability of the proposed method.
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1 Introduction

The area of heuristic optimization methods, which includes evolutionary algorithms and biology-
inspired methods, is currently under rapid development of due to the high efficiency of such ap-
proaches in various domains and availability of large computational resources. However, the pro-
posal of new ideas is always strongly connected to the level of understanding of these algorithms’
inner functioning principles, which is often not as high as desired. Because of this, the development
of methods which allow better understanding of algorithms behaviour, for example, the influence
of parameter values, would promote intuition of researches and lead to new ideas and directions of
investigation.

One of the most popular evolutionary optimization techniques today is the differential evolution
(DE) algorithm, originally proposed in [9]. The DE has shown its superior properties compared
to other approaches in numerous competitions and found a large variety of real-life applications,
which makes this method an interesting research topic. However, one of the disadvantages of DE is
its high sensitivity to parameter values, such as scaling factor F' and crossover rate Cr [4]. Better
understanding of these parameters’ influence is one of the most important directions of studies
about DE.

In this paper the expected fitness improvement (EFI) metric is proposed to visualize the pa-
rameter search space of crossover rates of modern DE modification, NL-SHADE-RSP algorithm.
The expected fitness improvement shows the possible improvement that could be achieved with
different Cr values, highlighting the areas of interest at different stages of search process. Based on
the EFI heatmap profiles, the conclusions about crossover rate importance are made for different
benchmark scenarios, such as biased, shifted and rotated goal functions, taken from the Congress
on Evolutionary Computation (CEC) 2021 competition for single-objective optimization. The per-
formed experiments shows that efficient control strategies could be applied for NL-SHADE-RSP
crossover rate change.

The rest of the paper is organized as follows: section 2 provides the related work and describes
DE basics, section 3 contains the description of EFI metric calculation method, section 4 contains
the experimental setup and results, as well as their discussion, and section 5 concludes the paper,
outlining the possible directions of further studies.

2 Related Work: Differential Evolution

Differential Evolution or DE is the population based evolutionary algorithm for solving real-valued
optimization problems firstly introduced by R. Storn and K. Price in [9]. This algorithm became
one of the most popular among researchers due to its simplicity (it is easy to emplement and
has just three parameters, which will be discussed later) and high efficiency [7]. The differential
evolution algorithm is based on the idea that to find the optimal solution only the difference vectors
between candidate solutions should be used.

The basic DE approach has two main phases: the initialization and search conducted by muta-
tion, crossover and selection operators. During the initialization a set (or population) of candidate
solutions (also called individuals) z; = (z;1,%i2,....,%ip), i =1,..., NP, j =1,..., D, is randomly
generated in the search space:

S = {Il S RD‘.TZ = (in,1>9€1‘727 ~~7xi,D) LTy S [aclbyj,a:ubyj]} (1)
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2 Stanovov, Akhmedova and Semenkin

using the uniform distribution with D being the dimensionality of that space and N P or population
size is the first parameter of the DE algorithm.

After initialization individuals iteratively change their position in the search space with aim to
find the best solution (optimum). For this purpose three operators are used: mutation, crossover
and selection. The search process starts with mutation and in the original DE approach the rand/1
mutation strategy was introduced:

Vi = Tr1j + F X (Tr2j — Tr35), (2)

where z; ; is the j-th coordinate of i-th individual, index ¢ is different from indexes r1, r2 and 3,
which are also mutually different. It should be noted that in this formula the second parameter of
the DE algorithm, namely the scaling factor F, chosen from [0, 2], is used. Mentioned parameter
has to be adjusted for an optimization problem in hand.

After mutation the crossover operator is applied to mutant vectors v;, i = 1, ..., N P. One of the
most commonly used crossover operators is the binomial crossover, where each gene of the mutant
vector v; is exchanged with the corresponding gene of z; with a uniformly distributed random
number from [0, 1] and additional condition:

iy = {vw, if rand(0,1) < Cr or j = .]T‘G/ﬂd. 3)

T, otherwise

Here Cr € [0, 1] or crossover rate is the last parameter of the DE algorithm, while the jrand is a
randomly chosen index from [1, D]. Thus, the genetic information of both parent-individual z; as
well as the mutant vector v; are combined to generate the trial vector u;. That additional condition
is required to make sure that at least one coordinate of the trial vector u; is taken from the mutant
vector v;, otherwise there is a chance that the trial vector and the parent individual will be the
same, which will then lead to unnecessary calculations during the selection step.

The second crossover operator often used in DE is the exponential crossover, which performs
crossover of adjacent components of the vector. In the exponential crossover first an integer n; is
chosen randomly in range [1, D] to act as a starting point for crossover, and then the second index
ne indicating the number of components to be taken from the mutant vector is determined by
incrementing ny with Cr probability. The exponential crossover is then performed using indexes
n1 and ng as follows:

w = Vi 55 lfje [nl,nl—f—ng) (4)
I x5, otherwise '

To keep individuals in the search space, namely each j-th coordinate of the i-th mutant vector
in the interval [z j, Tup;],7 = 1,..., D, the midpoint target bound constraint handling method
[1] was applied. In this method if the component of the obtained vector is greater than the upper
boundary or smaller than the lower boundary, its parent x; is used to set the new value for the
mutant vector.

Finally, during selection either the trial vector u; or the parent individual x; is carried to the next
iteration. It is done according to their fitness values, which are usually determined by calculating
the objective function values: if the trial vector u; is better or equal to the parent individual x;
in terms of fitness, then the i-th individual in the population is replaced. The selection step is
performed in the following way:

' x;, A flug) > f(xs)

Nowadays, there are a lot of modifications of the differential evolution approach developed
for solving various optimization problems, including one- or multi-objective constrained or un-
constrained optimization problems. Most of these modifications are focused on its parameters
adjustment or proposing new mutation strategies [5]. The following several well-known mutation
strategies are commonly applied to the DE algorithm: rand/2, best/1, best/2, current-to-best/1 and
current-to-pbest/1.
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The last mutation strategy mentioned here, namely current-to-pbest/1, is to be of particular
interest. It was introduced in the JADE algorithm [13] and later used in the SHADE algorithm [10]
and also in its various modifications. The current-to-pbest/I mutation strategy works as follows:

Vij = Tij + F X (Tppest,j — Tij) + F X (Tr1,j — Tr25), (6)

where pbest is the index of one of the pbx 100% best individuals, different from 7, 1 and 2. Thus,
to use this mutation strategy the pb parameter should be chosen.

It was established that the scaling factor F' as well as the crossover rate C'R affect algorithm’s
efficiency and should be chosen carefully for specific optimization problems. Therefore, using them
for mutation and crossover operators with fixed values may cause poor results. In the JADE
algorithm [13] parameters F' and Cr are adjusted automatically, to be more specific, firstly for
each individual x; at each iteration ¢, the crossover probability Cr; is independently generated
according to a normal distribution of mean pc, and standard deviation 0.1; obtained value is
then truncated to [0, 1]. In the same manner the mutation factor F; for each individual z; at each
generation ¢ is independently generated according to a Cauchy distribution with location parameter
pr and scale parameter 0.1. If the obtained value F; < 0 then it is generated again, and if F; > 1
then it is set to 1.

Similar ideas were used in the SHADE algorithm [10], and its mechanism for parameter adap-
tation can be described as follows. The historical memory of H cells (Mg, My p) is maintained,
each containing a couple of F' and Cr values (in the SHADE approach the memory size was set
to H = 5 and the current memory index was denoted as h). Thus, for mutation and crossover
operators new parameter values are sampled with Cauchy distribution F' = randc(Mpy,0.1), and
normal distribution Cr = randn(Mcrg,k,0.1), k is chosen in range [1, D] for each candidate solu-
tion. Both obtained values are then truncated to [0,1] the same way as it is done in the JADE
algorithm.

Additionally, two arrays S and S¢, are generated: if there was an improvement in terms of
the fitness value, then the corresponding values of parameters F' and Cr as well as the fitness value
difference Af are stored in these arrays. They are used at the end of the iteration to update the
memory cells with weighted Lehmer mean [3]:

151 2
P w; S5
mean., = %’ (7)
> e W55
where w; = —al Af; =1f(uj) — f(z;)| and S is either S¢, or Sp.

sl ap’

And finally the new memory cell values are updated: Mﬁ,ﬁl = mean,,r,(F), Métlk = mean,(CR),
where t is the current iteration number. ' '

The JADE and SHADE algorithms as well as their modifications (for example, the L-SHADE
approach [11]) also use an external archive A, which size is usually equal to N P. Solutions replaced
during the selection step are stored in that external archive. The archive A is empty during the
initialization and it is filled as the algorithm works: if the newly generated candidate solution is
better than the parent individual in terms of the fitness value, then the parent is saved in the
archive. If the archive is full, the new individuals replace randomly selected ones. The individuals
from the archive A are used during the mutation step, namely individuals used to calculate new
coordinates can be randomly selected as from the population so from the external archive.

It should be noted that in the L-SHADE algorithm additionally the population size N P changes
from iteration to iteration: the linear reduction strategy was proposed for the population size
adaptation [11]. The population size NP is recalculated at the end of each generation, and the
worst individuals in terms of fitness are eliminated. The population size is calculated with the
linear function depending on current number of function evaluations:

NPyyin — NP,

NPy = round( NFE “ENFE + NPaa), (8)

where NP,,;, = 4 and NP,,,, are the minimal and initial population sizes, NFE and NFFE,,..
are the current and maximal number of function evaluations.
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3 Expected Fitness Improvement Metric

Every optimization method mainly relies on the fitness values, as long as the goal is to mini-
mize/maximize these values. The described parameter adaptation techniques are designed to adjust
parameter values so that higher fitness improvements are achieved. So, the parameter setting is
highly dependent not only on the fact of the improvement, but also on the improvement value, like
in SHADE algorithm. The problem of setting the parameters represents an optimization problem
itself, so a better understanding of this problem structure is highly desirable.

To perform the visualization of the possible fitness improvements at every step of the search
process with different crossover rates Cr the Expected Fitness Improvement (EFI) metric is pro-
posed. The EFT is based on the following idea: at every iteration where EFI should be calculated
a large set of solutions is generated using mutation and crossover steps with different Cr values
from a grid, and for every Cr the average improvement is measured. For example, to estimate the
expected fitness improvements for the full range of crossover rates at a given generation g, the
values of Cr = 0,0, Crgt, ey 1 = C'rgy, 1 are tested, where Crg; is the step size. The number of steps
is defined as NCrg = CT . The result is an array EFI; ¢y, k=0,..,NCrg forallg=1,..., NG
generations. The pseudocode of the EFI estimation for different Cr values is presented in Algorlthm
1.

Algorithm 1 EFI computation

1: Initialize Differential Evolution
2: Set grid with Crse, NCrg
3: Initialize matrix EFI[NCrs, NG] =0
4: Generation number g =0
5: while NFE < NFEnq: do
6: for s =0 to NCrs; do
7 Set AImp =0
8: for i=1to NP do
9: Sample F' value
10: if s == NCrs then
11: Sample Cr value
12: else
13: Set Cr = sx Crg
14: end if
15: Mutation
16: Crossover
17: if f(us) < f(z:) then
18: Almp = AImp + f(x;) — f(u;)
19: Save new solution
20: end if
21: end for
22: EFI[s, NG] = AImp/NP
23:  end for

24: g=g9g+1

25:  Update algorithm specific parameters
26: end while

27: Return matrix EFI[NCrs, NG|

The EFI array containing the measured possible improvements could be visualized to estimate
the distribution of promising crossover rate Cr values and the efficiency of parameter tuning
technique used. However, there is a problem of values scale, which arises from the fact that at
every next generation the average fitness improvements are gradually decreasing, i.e. if initially the
EFT values could be around 10'° or even more, at the end of the search they could be around 10710
or even exactly zero. To overcome this issue, the distribution of EFI values should be visualized at
every generation separately.

The described EFI metric is applied to the NL-SHADE-RSP algorithm, developed for the CEC
2021 benchmark. It which contains several important improvements compared to the well-known
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L-SHADE, namely the non-linear population size reduction, adaptive archive usage, and modified
historical memory size depending on the problem dimension. The population size in NL-SHADE
is controlled in the following way:

NP,y =round((NPin — NPpae) NFEFNFE L NP, o), (9)
where NFE, = # is the ratio of current number of fitness evaluations. This population size

control scheme was taken from the Adaptive Gaining-Sharing Knowledge (AGSK) algorithm [6],
which implements the concept of knowledge exchange between experienced and non-experienced
individuals in the population. The main operators and algorithm structure is still similar to DE,
although there is a difference in trial vector generation - the algorithm generates them using two
populations of mutant vectors. Although the paper does not describe it, according to the available
source code, AGSK implements non-linear population size reduction presented above.

The NL-SHADE-RSP uses automatic tuning of archive usage probability, originated from the
strategy adaptation implemented in IMODE algorithm [8]. The probability pa of archive usage in
the last index 72 in current-to-pbest strategy is initially set to 0.5, unless the archive is empty.
It is then automatically tuned based on the number of usages n 4, which is incremented every
time an offspring is generated using archive and sum of fitness improvements achieved with the
archive Af, and without it Afp. The archive usage probability is recalculated at the end of each
generation as follows:

_ Afa/na

AfA/TLA + Afp/(l — nA) '
After this the probability pa is checked to be within [0.1, 0.9] by applying the following rule:
pa = min(0.9,maxz(0.1,p4)), similar to the rule used in IMODE algorithm [8].

The pb value for current-to-pbest mutation in NL-SHADE-RSP is controlled in a similar manner
to the jSO algorithm [2], with the initial pb,,q. set to 0.4 and the final pb,,;, = 0.2. The same linear
reduction of pb parameter is used, allowing wider search at the beginning and better convergence
at the end.

The NL-SHADE-RSP algorithm used both exponential and binomial crossovers with equal
probability, and the type of crossover to be used was randomly chosen for each individual.

In addition to the proposed EFI metric, the pairwise distance distribution is analyzed in this
study. For this purpose, the Euclidean distance between all individuals in the population is esti-
mated, and the histogram of distances is built at every generation separately. The distributions of
EFTI and distances for several scenarios of DE optimization are presented in the next section.

rA (10)

4 Experimental Setup and Results

The experiments in this study were performed using the benchmark functions presented for the
Congress on Evolutionary Computation 2021 competition on single-objective optimization [12]
because this framework considers eight cases of the same goal functions, i.e. basic, biased, shifted,
rotated functions, and combinations of these modifications, e.g. biased, shifted and rotated at
the same time. The set of functions contained 10 functions, which should be tested with the
optimization method across dimensions 10 and 20. The maximum number of function evaluations
maxFE is set to 2 x 10° and 10° for 10D and 20D functions respectively.

For every function and every benchmark type the step size for checked crossover rates was set
to 0.01, i.e. there were 100 crossover rates tested from 0 to 0.99. The initial population size was
set to 30D, as this appeared to be a reasonable setting in previous studies. The memory size was
set to 20D. The EFT arrays, as well as distance histograms are visualized as heatmap profiles.
In addition, the best, average, worst fitness values, average EFI, average distance and average of
parameter values in memory cells M, are shown in the figures. As long as the population size was
constantly changing and the number of generations spent at the beginning of the search and at
the end of the search to evaluate the same number of solutions is different, the EFI was calculated
not every generation, but every 0.002 mjg 5 ;JE function evaluations, resulting in 500 iterations. The
first experiment was performed for the bent cigar function (F1) without any modifications, 10D,
the EFI heatmap is shown in Figure 1. Better values are shown in yellow.

Figure 1 shows that for the relatively simple bent cigar function, where the achieved function
values are around 10729, during most of the search process larger crossover rates were dominating,

80



6 Stanovov, Akhmedova and Semenkin

Function 1: Bent Cigar, 10D, Basic
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Fig. 1. EFI heatmap and distance histogram profiles, F1, basic benchmark, 10D

i.e. the expected improvement for Cr values was larger when Cr > 0.5 than for Cr < 0.5. This
due to the fact that bent cigar is a non-separable function, i.e. it requires steps along more then
one axis to perform the search. The distance histogram profile shows that there are no groups of
points, which indicates that there is only one optimum. The average crossover rate in the memory
cells quickly converges to 1, which seems to be a valid strategy in this case. Figure 2 shows the
results for shifted Schwefel’s function, 10D.

The Schwefel’s function has multiple local optima, and in non-rotated case could be efficiently
solved by one-variable-at-a-time strategy, which is clearly seen on the EFI heatmap, where smaller
C'r values perform better, as larger Cr lead to more "risky” moves in the search space, which not
always result in efficient search. However, this is true only for the main part of the search process,
i.e. from iteration 10 to iteration 300. During the first 10 iterations large C'r values are better,
probably because in this period the initial exploration of the search space happens, capturing the
most interesting areas to exploit later. Similar to this, the final convergence, which happens at
around generation 300, and also requires larger Cr values, as at this moment it is important to
find the optimum in a bowl-like landscape, so diagonal steps could be helpful. Also, the pairwise
distance histogram shows that the algorithm identifies multiple local optima, and then deletes
some of them thanks to the population size reduction. Despite the fact that smaller Cr are better,
the memory cells values are dragged up to 1 due to the biased parameter adaptation with Lehmer
mean. Figure 3 shows the results for the same Schwefel’s function, 10D, but for the rotated case.

In the rotated case the EFI heatmap changes for the Schwefel’s function, but not in the way
which could be expected. The first 10 iterations are almost the same, however, later the search
efficiency drops, because it is difficult for the algorithm to tackle the function landscape. Although
the function is rotated, large Cr values do not lead to significant improvements, while small C'r
lead to some improvements, which makes the algorithm move the memory cells values towards zero.
It could have been expected that for non-rotated functions smaller Cr would be more efficient,
same as larger Cr for rotated, but the EFI in this cases shows that the opposite happens. In the
rotated case the algorithm stopped without reaching the global optimum. Figure 4 demonstrates
the EFI heatmap profiles for the next function, Lunacek bi-Rastrigin, which has two large areas of
attration.
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Fig. 2. EFI heatmap and distance histogram profiles, F2, shifted, 10D

Function 2: Schwefel’s, 10D, Rotation
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Fig. 3. EFI heatmap and distance histogram profiles, F2, rotated, 10D

Figure 4 represents a particular interest, as here there are several switches between small and
large C'r values being better for the function improvements. At the initial stage for the first around
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Fig. 4. EFI heatmap and distance histogram profiles, F3, basic benchmark, 20D

20 generations the large Cr are dominating, and at the distance histogram it is clearly seen that all
points have almost similar distances. After this period, the population is split in two groups, reach
rushing towards one of the areas of attraction, and at this period smaller Cr would result in more
larger improvements - this could be because of the convergence to local optima, which is easily done
by one-variable-at-a-time manner for non-rotated Rastrigin function. However, at the end of this
period, at around iteration 100, large Cr start dominating again, when two parts of the population
are far from each other. After the population size reduction cancels one of them out, small Cr
values are better again, and finally, when the global optimum is almost found, Cr close to 1 are
good again, allowing fast convergence to the optimum. These several switches demonstrate that
even for such relatively simple problems the behaviour of C'r values could be quite complicated.

It is important to notice here how the average improvement, i.e. average EFI is related to the
Cr switches and average fitness values in the population. When the red line, average EFT is above
the yellow (average fitness) and green (worst fitness), Cr > 0.5 are dominating, and vice versa.
This it true for all periods except the one around iteration 100, where all three lines are close to
each other. Similar behaviour could be observed on all previous figures: if average EFI is closer or
even larger than worst, then large Cr are better, and when average EFI is close to best fitness,
smaller C'r appear to deliver more improvements. The mechanism behind such dependence remains
unclear. Figure 5 considers one of the more complicated cases, hybrid function with bias, shift and
rotation applied altogether.

In the case shown on Figure 5 there are two clearly seen stages of search: initial convergence
and exploration with Cr > 0.8 being the best choice, and the more difficult and inefficient search,
where smaller Cr allow better improvements. Same as for previous functions, the switch between
these two stages, happening after iteration 100, coincides with the average EFT curve hitting worse
and average fitness curves. The averaged memory cells M¢, values in this case still keep the Cr
close to 0.9, although the EFI shows that this is the region of smallest efficiency. This could be
one of the reasons of algorithms low efficiency for this function. It is important to mention, that
although smaller Cr are more efficient at the middle of the search process, this does not meant
that the function is separable, is actually shows that performing the search along the axis at this
stage would bring more benefits.
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Considering the discovered dependency between the crossover rate, current fitness and average
fitness improvement, a simple parameter control scheme was tested:

— {1, if oy 502 AS > whs Zico i )
0, otherwise

The crossover rate was updated every generation. In this case the EFI calculation was switched off.
The comparison between NL-SHADE-RSP with and without fitness-based crossover rate control
is presented in Table 1. The Mann-Whitney statistical test with significance level p = 0.01 is used
for comparison, with the number of wins (+), ties (=) and losses (-) over 10 functions for every
benchmark set and both 10D and 20D.

Table 1. Mann-Whitney tests of NL-SHADE-RSP against modified with crossover control

Benchmark (code) 10D 20D
Basic (000) 14+/9=/0- 2+/8=/0-
Bias (100) 14/9=/0- 3+ /7=/0-
Shift (010) 1+/9=/0- 2+ /8=/0-
Rotation (001) 14+/8=/1- 1+/8=/1-

Bias, Shift (110) 1+/9=/0- 2+ /8=/0-

Bias, Rotation (101)  0+4/9=/1- 24/7=/1-

Shift, Rotation (011)  04/8=/2- 2+4/7=/1-

Bias, Shift, Rotation (111) 0+/8=/2- 2+/8=/0-
Total 5+ /69=/6- 16+ /61=/3-

The results in Table 1 show that such relatively simple control strategy could be competitive,
or even better than the success-history based adaptation used in L-SHADE based algorithms.
The improvements were observed for function 4 (Expanded Rosenbrock plus Rastrigin) for 10D
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and losses were for functions 5 and 6, i.e. hybrid functions. For 20 the wins were for functions 3
(Lunacek bi-Rastrigin), 4 and 6, while few performance deteriorations were for functions 8 and 9,
i.e. composition functions. The improvements were mainly found at the end of the search, while for
most of the computational resource both modified and non-modified NL-SHADE-RSP had similar
performance - this is mainly due to the fact that Cr has much less influence on the algorithm
performance, then, for example, scaling factor F.

5 Conclusion

In this study the expected fitness improvement metric was proposed to visualize the parameter
search space of the crossover rate of the NL-SHADE-RSP algorithm, allowing to indicate more
promising regions for Cr at different stages of the optimization process. The EFI heatmap profiles
allowed revealing several important properties, such as switching behaviour of more promising
C'r values. Based on the dependence between the improvements and the average fitness values a
simple parameter control strategy is proposed, which was shown to be more efficient the standard
parameter adaptation in some cases. The EFT calculation represents a general framework, which
could be applied to other optimization algorithms to analyze different parameters’ dynamics during
the search process.
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Abstract. Performance and power consumption are major concerns for Deep Learning (DL)
deployment on Edge hardware platforms. On the one hand, software-level optimization tech-
niques such as pruning and quantization provide promising solutions to minimize power
consumption while maintaining reasonable performance for Deep Neural Network (DNN).
On the other hand, hardware-level optimization is an important solution to balance perfor-
mance and power efficiency without changing the DNN application. In this context, many
Edge hardware vendors offer the possibility to manually configure the Hardware parameters
for a given application. However, this could be a complicated and a tedious task given the
large size of the search space and the complexity of the evaluation process. This paper pro-
poses a surrogate-assisted evolutionary algorithm to optimize the hardware parameters for
DNNSs on heterogeneous Edge GPU platforms. Our method combines both metaheuristics
and Machine Learning (ML) to estimate the Pareto-front set of Hardware configurations
that achieve the best trade-off between performance and power consumption. We demon-
strate that our solution improves upon the default hardware configurations by 21% and 24%
with respect to performance and power consumption, respectively.

1 Introduction and related works

Deep Neural Networks (DNN) are known for their intensive computations and memory operations.
Thus, they need a careful tuning of both software and hardware, especially for resource-constrained
Edge platforms. Modern Edge Graphical Processing Unit (GPU) accelerators provide outstanding
performances for Deep Learning (DL) applications [1]. Nevertheless, this comes at the cost of
considerable power consumption. Adjusting hardware parameters such as processing cores and
operating frequencies according to the DNN execution requirements, represents a different way
to improve performance and power efficiency. However, it is hard to decide the best Hardware
configuration because of the heterogeneous complexity of the GPU architecture and the wide range
of possible configurations. The contradictory nature of the two objectives, increasing performance
and decreasing power consumption, makes the optimization even more complex. Hence, this issue
can be formulated as a multi-objective optimization problem where we search for an optimal
Pareto set of hardware configurations that achieve the best trade-off between the two objectives for
a given DNN application. This paper proposes a surrogate-assisted multi-objective optimization
that incorporates both Machine Learning (ML) and metaheuristics to approximate an optimal
Pareto set of hardware operating frequencies for DNNs on Edge GPU accelerators. The resulted
Pareto set will help the user to choose adequate operating frequencies according to the application
requirements and system budget constraints.

Some works have been proposed in the literature to address the hardware tuning issue in het-
erogeneous GPUs. Authors in [2] propose a prediction model based on Support Vector Regression
(SVR) for power consumption of GPU kernels for different GPU core and memory frequencies. In
[3] and [4], the authors propose a cross-domain modeling approach for power consumption that
models both the application and the GPU micro-architecture under variable GPU core and memory
frequencies. [5] conducts an empirical study on the impact of frequency scaling on performance and
energy consumption of DNNs training and inference on high-performance GPUs. This study shows
that GPU DVFS has a significant improvement on both performance and energy consumption of
DNNs. [6] proposes a ML based prediction methodology for performance and power consumption
of OpenCL kernels on GPU platforms. They combine the two prediction models to approximate
a Pareto-set of frequency configurations on GPUs. Where the works mentioned above only focus
on tuning GPUs, [7] considers both CPU and GPU tuning in heterogeneous devices. However,
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the authors use neither prediction models nor optimization algorithms. They rely on empirical
observations of profiling results, which may lead to sub-optimal solutions.

2 Problem formulation

Given a fixed DNN application and Edge GPU platform, adjusting the hardware parameters can
be formulated as a multi-objective optimization problem where we search for the optimal hardware
configurations that provide the best trade-off between performance and power consumption. Let
X = {x1,22,...,2,} be a set of hardware configurations, where each x; represents one instance
of the hardware operating frequencies. For instance, a x; can represent the frequency value of
a CPU, GPU cores or memory. Let F' = (f1, f2) be a vector of objectives to minimize, where
fi € {execution_time, power_consumption}. A real evaluation of these objectives is a tedious and
time-consuming task. Thus, instead of directly measure F' on the Hardware platform, we rely on
prediction functions as surrogate-models for F that we denote F'. Our problem is defined as follows:

minF(x) = (f1($)7f2(37))
st. reX

MOP = { (1)

In this paper, we study the case of optimizing the hardware configurations of a modern Edge
GP-GPU platform: NVIDIA Jetson AGX Xavier [8] for a state-of-the-art DNN: AlexNet [9]. We
tune four hardware parameters: CPU, GPU, PVA, and memory frequencies. We set the lower and
upper bounds for each parameter according to the reported minimum and maximum values in the
configuration file of Jetson Tegra system [10].

3 Proposed Approach

We propose a surrogate-assisted evolutionary algorithm that leverages both metaheuristics and
Machine Learning. We speed up the optimization process using ML-based prediction models to
estimate F. Our proposed methodology is composed of two main steps:

a) b)
DNN model Samples of HW | —
configurations | ! Performance Power
[ I ___model model
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Fig. 1: Overview of the proposed methodology: a) corresponds to the training phase of the prediction mod-
els for performance and power consumption. b) depicts the optimization phase of the hardware parameters
using both the trained prediction models and evolutionary-based multi-objective metaheuristic

a. Prediction models training: The training phase is illustrated in figure 1.a. First, we collect
training data by profiling the DNN application on randomly sampled Hardware configurations.
We denote the resulting training datasets for performance by D; = {(x1,11), (z2,02),. .., (Xn,ln)}
and for power consumption by D, = {(z1,pl), (z2,p2),- -, (@n,Pn)}, where I; and p; refer to the
measured values of performance and power consumption, respectively, under the hardware configu-
ration z;. Second, we train SVR-based prediction models for performance and power consumption
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on D; and D,,. The trained prediction models are used in the optimization step for a rapid evalu-
ation. The following prediction models are defined:

{Mperformance(Dl) - Z?:l(aj - dj)KRBF(djlle) +b (2)

Myower(Dp) = Z?:l(aj —a;)Krpr(djp, Dp) +b

where b, o, and a; refer to the bias and training coefficients of the trained instance of SVR. Krpr
is a radial basis kernel function. Dy, D, are the datasets used to train the prediction models for
performance and power consumption, respectively.

b. Optimization: Figure 1.b gives an overview of the optimization phase. To efficiently explore the
search space of the hardware configurations, we implement MOEA /D, a decomposition-problem-
based metaheuristic, as a multi-objective evolutionary optimization algorithm. It uses different
evolutionary operators to combine good solutions of neighboring problems, resulting in quick and
accurate convergence. We adapt MOEA /D for our problem by leveraging the normalization tech-
nique as both performance and power consumption have different scales. We choose the Tchebycheff
method as a problem decomposition technique. To generate an ensemble of uniformly distributed
weight vectors, we use the Das and Dennis technique. The trained prediction models from figure
1.a are used to evaluate the fitness in the MOEA /D algorithm.

4 Experimental Results

Figures 2 and 3 provide an overview of the estimated Pareto front and set by our proposed method.
In figure 2, the blue points represent the predicted Pareto front, while orange ones report the
measured values of performance and power consumption of the Pareto front. The seven default
hardware configurations of NVIDIA Jetson AGX GPU are marked with the other point types and
colors.
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Figure 2 shows that in addition to the small gap between predictions and measurements, our
approach gives configurations that dominate the default suggested NVIDIA configurations. Details
of the prediction errors are given in table 1. Obtained MAPE and RMSPE values are small for
both performance and power predictions. Moreover, the rank order is highly respected between
predicted and measured metrics according to the reported Kendall’s 7 coefficients in table 1. For
configurations that give high performance and low power consumption, we have obtained a con-
figuration with the same performance as the MAXN power mode of NVIDIA with a power-saving
of 24%. Similarly, for performance, we have obtained a configuration that gives similar power con-
sumption as the minimum power mode suggested by NVIDIA (i.e., conf 1), with a performance
gain of 21%. Figure 3 presents the Pareto set in the decision space. We notice that most config-
urations maximize the memory frequency. This is explained by the architecture of AlexNet that
holds a large number of parameters, which results a high memory activities. This also corroborate
our motivation to adjust the hardware configuration according to the DNN requirements.
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5 Conclusion

In this paper we introduced a multi-objective optimization approach that leverages both meta-
heuristics and Machine Learning to optimize the Hardware configurations for Deep Neural Net-
works on GPU heterogeneous accelerators. The optimization approach incorporates prediction
models for approximating the fitness functions to speed up the evaluation of the sampled configu-
rations by the optimization algorithm. Experimental results on AlexNet and Jetson AGX Xavier
GPU demonstrated that a higher accurate prediction and a more energy-efficient configurations
that outperform the predefined ones can be obtained. As a future work, we plan to develop a
cross-surrogate-based multi-objective optimization approach that models both DNN architecture
and Hardware configuration. We also propose to enhance the optimization process by injecting the
knowledge on the execution requirements of the DNN.

References

1. Hassan Halawa, Hazem A Abdelhafez, Andrew Boktor, and Matei Ripeanu. Nvidia jetson platform
characterization. In Furopean Conference on Parallel Processing, pages 92—-105. Springer, 2017.

2. Qiang Wang and Xiaowen Chu. Gpgpu power estimation with core and memory frequency scaling.
ACM SIGMETRICS Performance Evaluation Review, 45(2):73-78, 2017.

3. Joao Guerreiro, Aleksandar Ilic, Nuno Roma, and Pedro Tomas. Gpgpu power modeling for multi-
domain voltage-frequency scaling. In IEEFE International Symposium on High Performance Computer
Architecture, pages 789-800. IEEE, 2018.

4. Joao Guerreiro, Aleksandar Ilic, Nuno Roma, and Pedro Tomés. Modeling and decoupling the gpu
power consumption for cross-domain dvfs. IEEFE Transactions on Parallel and Distributed Systems,
30(11):2494-2506, 2019.

5. Zhenheng Tang, Yuxin Wang, Qiang Wang, and Xiaowen Chu. The impact of gpu dvfs on the energy
and performance of deep learning: An empirical study. In 10th ACM International Conference on
Future Energy Systems, pages 315-325, 2019.

6. Kaijie Fan, Biagio Cosenza, and Ben Juurlink. Predictable gpus frequency scaling for energy and
performance. In /8th International Conference on Parallel Processing, pages 1-10, 2019.

7. Ourania Spantidi, Ioannis Galanis, and Iraklis Anagnostopoulos. Frequency-based power efficiency
improvement of cnns on heterogeneous iot computing systems. In 2020 IEEE 6th World Forum on
Internet of Things (WF-IoT), pages 1-6. IEEE, 2020.

8. Jetson AGX xavier developer kit. https://developer.nvidia.com/embedded/jetson-agx-xavier-
developer-kit. Accessed: 2021-02-01.

9. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems, volume 25. Curran Associates, Inc., 2012.

10. Jetson developer kits and modules. https://docs.nvidia.com/jetson/14t/. Accessed: 2021-02-01.

89



pyParadiseo : a Python-powered Framework for
Metaheuristic Optimization

J. Gmys!, N. Melab?! and E-G. Talbi?!

! Inria Lille Nord-Europe, France
jan.gmys@inria.fr
2 Université de Lille, France
nouredine.melab@univ-lille.fr
el-ghazali.talbi@univ-lille.fr

1 Introduction

Paradiseo is an open-source white-box object-oriented framework dedicated to the reusable design
of metaheuristics. It allows the design and implementation of single-solution and population-based
metaheuristics for mono- and multi-objective, continuous, discrete and mixed optimization prob-
lems. Built on the core module Evolving Objects (EO) [1], the development of Paradiseo started in
the early 2000’s [2], becoming since then the largest codebase of existing components for stochastic
optimization algorithms.

In 2011, Parejo et al. performed a comparative study of metaheuristic optimization frameworks
according to 271 features grouped in six areas of interest [4]. Among 33 frameworks, 10 (including
Paradiseo) have been selected using well-defined filtering criteria and analyzed. Paradiseo ranked
274 in terms of metaheuristic feature support and 3" in terms of adaptation to the optimization
problem and its structure. As one of the rare frameworks that provide the most common parallel
and distributed models, Paradiseo ranks 1°¢ in terms of advanced characteristics. Figure 1 gives
an overview of the modules provided in Paradiseo and E.G. Talbi’s book [3] covers their design in
detail.

2 The Paradiseo design and motivation for its “pythonization”

Implemented in C++, Paradiseo is based on a clear conceptual separation of the solution methods
from the problems they are intended to solve. This separation confers to the user a maximum code
and design reuse. Furthermore, the fine-grained nature of the classes provided by the framework
allow a higher flexibility compared to other frameworks [3]. At the implementation level, this
separation is expressed by dividing classes into two categories: (1) provided classes that implement
problem-invariant parts and (2) required abstract classes that have to be specialized by the user
to implement the problem-specific parts. The heavy use of small-sized classes allows to change
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Message-passing—__ |~ PEO\J\'/j“ﬂ ___— Multi-objectives
~— e /
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Fig. 1. Paradiseo’s modules
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existing components and to add new ones easily, without impacting the rest of the application.
Templates are used to model metaheuristic features: coding structures, transformation operators,
stopping criteria and so on. These templates can be instantiated by the user according to the
problem-dependent parameters.

The object-oriented mechanisms such as inheritance, polymorphism, and so on are powerful
ways to design new algorithms or evolve existing ones. However, while the use of templates allows
to write generic reusable code, it also increases compile times, makes error messages hard to
understand and forbids the compilation of Paradiseo into an object library file. Designed as a white-
box framework, an efficient usage requires a certain level of knowledge of Parodiseo’s inheritance
tree from the user. Even the application of a basic genetic algorithm to a custom optimization
problem involves deriving user-defined classes from a few abstract base classes. Therefore, users of
the framework must be quite comfortable with object-oriented concepts of C++ and Paradiseo’s
build system (cmake).

Clearly, there is a steep learning curve one has to climb when getting started, which is one
of the main impediments to the use of Paradiseo. Even users familiar with the framework may
not want to bear long compilation times and potentially complicated error messages when simply
checking whether a problem can be solved with metaheuristics or testing some new ideas. While
this might just be the inevitable price to pay for achieving such a high level of speed and flexibility,
another weakness of Paradiseo pointed out in the study of Parejo et al. [4] is its relative lack
of optimization process support (statistical analysis, user interface, interoperability, experiments
design, visualization)—in other words, Paradiseo could be a lot more user-friendly!

3 The pyParadiseo framework

For the reasons mentioned above, we decided to develop a “pythonized” pyParodiseo framework.
The objective of this talk is to present an early version of pyParadiseo and to outline its devel-
opment roadmap for the next two years. The three key objectives laid out for the new framework
are:

— Reducing the cost of the “entry ticket” to the platform. pyParadiseo exposes a large
number of algorithms and components provided by Paradiseo to Python through a high-
level C++-Python interface. This allows users to specify required user-defined components and
articulate the algorithm selection (composition of components) in Python without having to
go through the C++ build process and learn Paradiseo’s internals. Parts of the framework will
be rewritten entirely in Python, as accessing Paradiseo through a high-level interface reduces
the ability for the user to customize all components of an algorithm. Specific tutorials for
pyParadiseo will be made available to facilitate its usage.

— Improving interoperability with machine learning tools, statistics, data science and vi-
sualization software, other (exact) optimization software, and so on. Since the early days of
Paradiseo (over 20 years ago) Python has evolved into a dominant language in application do-
mains which are closely related to metaheuristic optimization, such as machine learning, data
science and scientific computing. The new pyParadiseo framework aims at providing a high
level of interoperability with popular tools such as tensorflow, scikit-learn, scipy, R, pandas,
and others.

— Maintaining and extending parallel processing capabilities of the framework. The out-
standing feature of Paradiseo is its parallel processing support and pyParadiseo aims at un-
locking these features for Python users, notably though Numba (https://numba.pydata.org)
which uses the LLVM compiler library for just-in-time compilation and provides support for
shared memory parallelization and GPU programming. pyParadiseo will extend Paradiseo’s
unique support for GPU-accelation [5] and make this feature much easier to use.

Paradiseo, previously hosted at GForge, has been recently migrated to GitLab where it is now
co-located next to pyParadiseo in the project repository:

https://gitlab.inria.fr/paradiseo/
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Abstract. We present a large neighborhood search (LNS) as optimization core for a co-
operative optimization approach (COA) to optimize locations of service points for mobility
applications. COA is an iterative interactive algorithm in which potential customers can
express preferences during the optimization. A machine learning component processes the
feedback obtained from the customers. The learned information is then used in an opti-
mization component to generate an optimized solution. The LNS replaces a mixed integer
linear program (MILP) that has been used as optimization core so far. A particular challenge
for developing the LNS is that a fast way for evaluating the non-trivial objective function
for candidate solutions is needed. To this end, we propose an evaluation graph, making an
efficient incremental calculation of the objective value of a modified solution possible. We
evaluate the LNS on artificial instances as well as instances derived from real-world data
and compare its performance to the previously developed MILP. Results show that the LNS
as optimization core scales significantly better to larger instances while still being able to
obtain solutions close to optimality.

1 Introduction

The traditional approach for solving service point placement problems, such as distributing charg-
ing stations for electric vehicles or vehicle sharing stations in a geographic area, essentially is to
first estimate the demand that may be fulfilled at potential locations and then to select actual lo-
cations either manually or by some computational optimization. However, estimating the customer
demand that may be fulfilled by certain stations is an intricate task in which erroneous assump-
tions may result in heavy economic losses for the service point provider. Also, estimating demand
upfront requires specific data which can be challenging and/or expensive to collect. As an alterna-
tive approach, in [1] we introduced a cooperative optimization approach (COA) for optimizing the
locations of service points in mobility applications. In contrast to the traditional approach, COA
is an iterative interactive algorithm that solves the demand data acquisition and optimization in a
single process by allowing customers to express their preferences intertwined with the optimization.
A machine learning component processes the feedback obtained from the customers and provides
a surrogate objective function. This surrogate objective is then used in an optimization component
to generate an optimized solution. This solution is then a basis for further interaction with the
users to obtain more relevant knowledge, and the whole process is repeated until some stopping
criterion is met. So far, COA uses a mixed integer linear program (MILP) in the optimization core
for determining solutions [2] or, in a former version [3], basic metaheuristic approaches that treated
the problem as black box model and hence do not make significant use of structural properties of
the problem. For an exact optimization core, the generated solutions are optimal w.r.t. to the so
far known information derived from the customer feedback. However, this optimality comes at the
cost of large computation times, especially for large-scale instances with thousands of customers
and hundreds of potential service point locations. In contrast, a heuristic optimization core may
feature better scalability towards larger instances. To this end we present here a large neighbor-
hood search (LNS) that can reduce computation times by orders of magnitudes with only small

* Thomas Jatschka acknowledges the financial support from Honda Research Institute Europe.
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losses in final solution quality. Due to the nature of the non-trivial objective function of our service
point distribution problem, an efficient way for evaluating said objective is necessary to make this
speedup possible. Therefore, our LNS features a data structure, referred to as evaluation graph for
modeling the evaluation of solutions. We show how the evaluation graph can be used to efficiently
keep track of small changes in the solution, such as opening or closing a service point. Based on
this evaluation graph, the LNS is able to quickly repair partially destroyed solutions in a promis-
ing heuristic way. We evaluate the LNS on artificial instances as well as instances derived from
real-world data and compare its performance to the previously developed MILP-based approach.

In the next section we review related work. Section 3 formally defines the General Service Point
Distribution Problem (GSPDP), as it is referred to, while an overview on the COA framework
is given in Section 4. Our main contribution, the LNS with its evaluation graph, is presented in
Section 5. Section 6 explains the benchmark scenarios, and Section 7 discusses experimental results.
Finally, Section 8 concludes this article and gives an outlook on future work.

2 Related Work

The basic concept of COA was presented in [1]. In interactive optimization algorithms, such as
COA, humans are used to (partially) evaluate the quality of solutions and to guide the optimiza-
tion process. For a survey on interactive optimization, see [4]. Interactive algorithms are often
combined with surrogate-based approaches [5, 6], in which a machine learning model is trained to
evaluate intermediate solutions approximately in order to reduce user interactions and to avoid
user fatigue [7]. In contrast to COA, most approaches from literature only allow a single user to
interact with the algorithm, e.g., [8,9]. Hence, in [10] COA’s surrogate function is based on a matrix
factorization model [11], a popular collaborative filtering technique [12] in which unknown ratings
of items are derived from users with similar preferences.

In [3] two heuristic black box optimization approaches were suggested for COA to generate new
candidate solutions w.r.t. to the current surrogate model: a variable neighborhood search as well
as a population-based iterated greedy approach. In [2] COA was substantially extended to also be
applicable in use cases where the satisfaction of demands relies on the existence of two or more
suitably located service stations, such as car and bike sharing systems.

More generally, there exists a vast amount of literature regarding the location planning of
service points for mobility applications, see, e.g., [13] for electric vehicle charging stations or [14]
for stations of a bike sharing system. However, to the best of our knowledge no further work on
interactive optimization approaches for location planning in mobility applications exists.

3 The General Service Point Distribution Problem

In this section we give a formal description of the Generalized Service Point Distribution Problem
(GSPDP) introduced in [2], which is the problem to be solved at the core of COA and for which we
will then propose the LNS. Service points may be set up at a subset of locations V = {1,...,n}.
Establishing a service point at a location v € V is associated with costs zf* > 0 and the total
setup costs of all stations must not exceed a maximum budget B > 0. Additionally, the expected
costs for maintaining this service point over a defined time are z*" > 0. Given a set of users U,
each user v € U has a certain set of use cases Cy, such as going to work, visiting a recreational
facility, or going shopping.

Each user’s use case ¢ € C, is associated with a demand D,, . > 0 expressing how often the use
case is expected to happen within some defined time period. The demand of each use case may
possibly be satisfied by subsets of service points to different degrees, depending on the concrete
application and the customer’s preferences. Hence, we associate each use case ¢ of a user u with a
set of Service Point Requirements (SPR) R, . with which a user can express the dependency on
multiple service points to fulfill the needs of the use case. For example, for the use case of visiting a
fitness center using a bike sharing system, one SPR may represent the need of a rental station close
to home or work and a second SPR a rental station close to some fitness center. We denote the set
of all different SPRs over all use cases of a user u by R, = UceCu R, .. Moreover, let R = UueU R,
be the set of all SPRs over all users.

For now, let us further assume we know values w;,,, € [0, 1] indicating the suitability of a service
point at location v € V' to satisfy the needs of user v € U concerning SPR r € R,, . in the use case
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c € Cy. A value of w,, =1 represents perfect suitability while a value of zero means that location
v is unsuitable; values in between indicate partial suitability. For each unit of satisfied customer
demand a prize g > 0 is earned.

A solution to the GSPDP is a subset of locations X C V indicating where service points are to
be set up. It is feasible if its total fixed costs do not exceed the maximum budget B, i.e.,

AMX) =) M <B. (1)

veX

The objective function of the GSPDP is to maximize

f(X) =4q- Z Z Du,c . TénRiun,c (%&;{(ﬂ%,v) - Z Z:;]ar. (2)

uelU ceCy veX

In the first term, the obtained prize for the expected total satisfied demand is determined by
considering for each user u, each use case ¢, and each SPR r a most suitable location v € V' at which
a service point is to be opened. Over all SPRs of a use case, the minimum of the obtained suitability
values is taken. The second term of the objective function represents the total maintenance costs
for the service stations. In [2] we have shown that the GSPDP is NP-hard.

By linearizing the objective function, the GSPDP can be modeled by the following MILP.

max q- Z Z Dy e Yu,c — Z A (3)

uwelU ceCy veV
> onn <1 Vre R (4)
veV
Orp < Ty YveV, reR (5)
Yu,e < Z Wy * Oy YueU, ceC,, r€ R, (6)
veV
Z zﬁ" T, < B (7)
veV
z, €{0,1} YoeV (8)
0<yuc<1 YueU, ceC, (9)
0<o0,,<1 VreR, veV (10)

Binary variables z, indicate whether or not a service point is deployed at location v € V. Con-
tinuous variables o,., are used to indicate the actually used location v € V for each SPR r € R;
these variables will automatically become integer. The degree to which a use case ¢ € C,, of a user
u € U can be satisfied is expressed by continuous variables y,, .. The objective value is calculated in
(3). Inequalities (4) ensure that at most one location with the highest suitability value is selected
for each SPR. Inequalities (5) and (6) ensure that use cases are only satisfied if there are suitable
locations with opened service points for each SPR of the respective use case. Inequalities (6) ad-
ditionally determine the degree to which a use case is satisfied. Last but not least, Inequality (7)
ensures that the budget is not exceeded.

4 Cooperative Optimization Algorithm

A crucial aspect of COA’s general approach is that the suitability values w,, are not explicitly
known a priori. A complete direct questioning would not only be extremely time consuming but
users would easily be overwhelmed by the large number of possibilities, resulting in incorrect
information. For example, users easily tend to only rate their preferred options as suitable and
might not consider certain alternatives as also feasible although they actually might be on second
thought when no other options are available.

Hence, interaction with users needs to be kept to a minimum and should be done wisely to
extract as much meaningful information as possible. Therefore, COA does not ask a user to directly
provide best suited station locations for the SPRs but creates meaningful location scenarios, i.e.,
subsets of locations, and asks the users to evaluate these. More specifically, a user u returns as
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Fig. 1: Components of COA and their interaction.

evaluation of a location scenario S w.r.t. one of the user’s SPRs » € R, a best suited location
vr,g € S and the corresponding suitability value w(r, v, g) > 0 or the information that none of the
locations of the scenario S is suitable. We assume here that the suitability of a location w.r.t. an
SPR can be specified on a five valued scale.

The COA framework consists of a Feedback Component (FC), an Evaluation Component (EC),
an Optimization Component (OC), and a Solution Management Component (SMC). Figure 1 il-
lustrates the fundamental principle and communication between these components. During an
initialization phase, the FC first asks each user u € U to specify her or his use cases C,, with their
associated SPRs R, ., as well as corresponding demands D,, ., ¢ € Cy,. Then, the FC is responsible
for generating individual location scenarios for each user which are presented to the user in order
to obtain her/his feedback.

The obtained feedback is processed in the EC. A crucial assumption we exploit is that in a large
user base some users typically have similar preferences about the locations of service points w.r.t.
to some of their use cases. Hence, by identifying these similarities and learning from them, the
EC maintains and continuously updates a surrogate suitability function we(r,v) approximating
the real and partially unknown suitability values w, , of service point locations v € V' w.r.t. SPR
r € R without interacting with the respective user. Based on this surrogate function, the EC also
provides the surrogate objective function

fo(X)=q-)_ > Du.- min <g}1€é§mﬂe(7’,v)> - (11)

uwelU ceCy, veX

with which a candidate solution X can be approximately evaluated.

A call of the OC is supposed to determine an optimal or close-to-optimal solution to the problem
with respect to the EC’s current surrogate objective function f@. In [2] this is achieved by solving
the MILP (3)—(10) in which the suitability values are approximated by the surrogate suitability
function wg.

The SMC stores and manages information on all generated solutions as well as suitability values
obtained by the FC.

The whole process is repeated until some termination criterion is reached. In the end, COA
returns a solution X* with the highest surrogate objective value of all of the so far generated
solutions. For more details, in particular on how meaningful solution scenarios are derived in the
FC and how a matrix factorization is utilized to determine the approximated values we(r,v) in
the EC, we refer the interested reader to [2].

5 Large Neighborhood Search

We now propose a large neighborhood search (LNS) as a faster replacement for the original MILP-
based optimization core in COA. The LNS follows the classical scheme from [15]. The key idea
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of LNS is to not search neighborhoods in a naive enumerative way but instead to identify via
some problem-specific more effective procedure either best or promising solutions within larger
neighborhoods. To this end, LNS frequently follows an iterative destroy and repair scheme: First,
a given solution is partially destroyed, typically by freeing a subset of the decision variables and
fixing the others to their current values. Afterwards this partial solution is repaired by finding
best or at least promising values for the freed variables. If the obtained solution is better than the
previous one, it is accepted, otherwise the previous solution is kept.

In our LNS a solution to a GSPDP instance is destroyed in a uniform random fashion by adding
kdest new locations to the solution, where k9" is a parameter that is varied.

To repair a solution X, we make use of a randomized greedy approach: Let A(v, X) denote by
how much the objective value of a solution X would decrease when removing location v from X.
Note that, it is discussed later how A(v, X) can be efficiently calculated for all v € X. In each
iteration we first generate a restricted candidate list of k**P locations v € V for which A(v, X) is
lowest, i.e., the candidate list contains the locations that have the lowest impact on objective value
of X. Hereby, k™P is another strategy parameter. Ties are broken randomly. A location is then
chosen uniformly at random from this restricted candidate list and removed from X.

To construct an initial solution in the first iteration of COA, we also make use of the repair
heuristic, starting from X = V and then sequentially removing locations from X for which A(v, X)
is lowest until the solution becomes feasible, i.e. kP = 1 for constructing an initial solution. In
subsequent iterations of COA, the LNS is warm-started with COA’s current best solution X*.

Our LNS makes use of two destroy operators with k9t = 10 and k9t = 20, respectively, and
two repair operators with kP = 2 and k™P = 4, respectively. These settings have shown to yield
a robust convergence behavior across the kinds and sizes of instances in our benchmark sets. In
each iteration a repair and destroy operator is chosen uniformly at random. Moreover, each LNS
run terminates after 40 iterations without improvement.

A crucial aspect for developing an effective heuristic for solving the GSPDP is that computing
the surrogate objective value fo of a solution in a straight-forward way from scratch is time
consuming. Hence, in order to accelerate this task we maintain for a GSPDP instance a directed
graph G = (LLUSLUCLU {lobj}, AL, UAsr U Acy) referred to as evaluation graph. This graph
represents the objective function calculation and stores intermediate results for a current solution,
allowing for an effective incremental update in case of changes in the solution. The evaluation graph
consists of four layers of nodes, which are the location layer (LL), the SPR layer (SL), the use
case layer (C'L), and the evaluation layer containing a single node lopj. The location layer contains
n nodes corresponding to the locations in V', i.e., LL = {l,, | v € V'}. The use case layer consists
of one node for each use case C,, of each user u € U, i.e., CL = {l. | ¢ € Cy, u € U}, and the
SPR layer contains one node for each SPR in € R,, ., for each use case ¢ € C,, and user u € U, i.e,,
SL={ly, |7 €Ryec ccCyucU}

There exists an arc in G from a node of the location layer [, to a node of the SPR layer [, , if
we(v,r) > 0,ie, Ay = {(ly,lur) | Ly € LL, 1, € SL, we(v,r) > 0}. A node of the SPR layer is
connected to a node of the use case layer if the corresponding SPR is an SPR of the corresponding
use case, i.e., Asr, = {(lu,r,lc) | luyr € SL, lc € CL, r € R, .}. Finally, each node I. of the use
case layer is connected to lopj, i.e., Acr = {(lc, lobj) | lc € CL}.

The location layer gets as input a binary vector (z,)yey with z, = 1 if v € X and z, = 0
otherwise, w.r.t. a solution X . Moreover, each node in G has an activation function a() that decides
its output value which is propagated to its successor nodes in the next layer as their input, i.e.,

1 ifveX
arp(e, X)=4 "VE7° Vi, € LL, (12)
0 otherwise,
asp(lyr, X)= max (app(ly, X) - we(v,r)) Vi € SL, (13)
(y,lu,r)EALL ’
acr(le, X) = min asr(lu,r, X) vi. € Cp, (14)
(lu,r,lc)EASL
aeval(lobj;X) = Z aSL(lch) - Z Z»Xar~ (15)
(leslobj)EACL veEX

The evaluation graph stores all output of the activation functions from the last evaluated solution
and is therefore especially efficient for evaluating subsequent solutions that only differ in a single
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location v € V as not everything needs to be calculated from scratch but just the modified value v
w.r.t. the current solution X needs to be propagated. Note that Az needs to be updated in each
iteration of COA as the EC recalculates the surrogate suitability values weg in each iteration with
newly obtained user feedback.

Additionally, the evaluation graph also makes it possible to efficiently keep track of how much
each location v contributes to the objective value of a solution. For this purpose, we introduce the
following new notations. Let X be a current solution and ¢ € C, be a use case of a user u € U that
is satisfied (to some degree) in X, i.e., for each r € R, . there exists at least one location v € X such
that we(r,v) > 0. Let v™**(r, X) refer to a location in the solution for which we (r, v™**(r, X)) =
max,ex Weo(r,v). For the sake of readability we further refer to we (r, v™**(r, X)) as wg**(r, X).
Additionally, let w%!Pack(r X) denote the second highest suitability value for an SPR r w.r.t. to
the locations in X, i.e., w%ak(r X) = max{ig(r,v) | v € X\ {v™*(r, X)} U {0}}. Note that

wiiback (r ) is zero if X\{vmax(r X) is empty. Finally, let @3 (u, ¢, X) = min,cp, , 05(r, X).

From the definition of the surrogate objective function, it follows that the degree to which a use
case c is satisfied in a solution X is only determined by the set of locations {v™®*(r, X) | r € Ry c}-
Hence, let A(u, ¢,v, X) denote by how much the degree to which a use case ¢ € C,, of a user u € U
is satisfied w.r.t. a solution X would decrease when removing v from X, i.e.,

Du . max X fallback X ~fallback X ~min X

Ao, ) — {0 D G350 X) = if1(r, X)) afss(r, X) < i (e X) (o
0 otherwise

A(u, ¢,v, X) = max{A(u,c,r, X) | r € Ry c,v =v"(r, X)} U{0} (17)

Generally speaking, the removal of a location v from a solution X only has an impact on a use case
¢ € C, if it results in a change of WEH™" (u,c, X). Additionally, note that the GSPDP also allows
cases in which one service point location can be associated to multiple SPRs of the same use case.
Such a case would for example correspond to situations in which a customer returns a vehicle at
the same station at which the vehicle was picked up. Therefore, the removal of a location from
X may affect a use case w.r.t. more than one of its SPRs. However, only the change that affects
ﬁ)gin(u, ¢, X)) the most is relevant for calculating by how much the degree to which a use case is
satisfied changes.

Hence, the amount A(v, X) by how much the objective value of a solution would decrease when
removing location v from X is calculated as

Av, X) = Var+ZZAUCUX (18)

ueU ceC,

Note that the time required for determining w™®*, wf!back and ™" is negligible if the domain of

the rating scale by which users can specify suitability values is small. Moreover, A(v, X) does not
need to be calculated from scratch every time a location is added or removed from the solution.
Let X o {v} refer to the modification of a solution, by either adding or removing a location v C V
to/from X. Then A(v', X o {v}) with v" € X can be determined from A(v’, X) as follows:

AW, X o{v}) = Z ZAucv X) 4+ A(u, e, v, X o {v}). (19)

ueU ceCy,

Additionally, A(v, X') needs to be updated only w.r.t. use cases that are actually affected by the
modification of the solution, i.e., only if wg®*, ”g‘“b“k or wm‘“ of a use case change. Finally, for
each use case c € C,, at most 2 - |Ru,c| locatlons need to updated in the worst case.

6 Benchmark Scenarios

Benchmark scenarios for our experiments were generated as described in detail in [2] and are
available at https://www.ac.tuwien.ac.at/research/problem-instances/#spdp.

The considered test instances are of two groups. One group of instances is inspired by the
location planning of car sharing systems and hence referred to as CSS. Locations are randomly
generated on a grid in the Euclidean plane. The number of use cases for each user is chosen
randomly, but each use case always has two SPRs. To generate suitability values for locations
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w.r.t. SPRs, ten attraction points are randomly placed on the grid, and each SPR is then associated
with a geographic location sampled from a normal distribution centered around a randomly chosen
attraction point. The actual suitability value is then calculated via a sigmoid function based on
the distance between the SPR’s geographic location and the respective service point location and
afterwards perturbed by Gaussian noise. Six sets of 30 benchmark instances were generated for
CSS, considering different combinations of the number of potential service point locations and the
number of users.

The second group of instances is derived from real-world taxi trip data of Manhattan and
referred to as MAN. The underlying street network of the instances corresponds to the street
network graph of Manhattan provided by the Julia package LightOSM3. The Taxi trips have been
extracted from the 2016 Yellow Taxi Trip Data®. For the generation of the instances all trips
within the ten taxi zones with the highest total number of pickups and drop-offs of customers were
considered, resulting in a total of approximately two million taxi trips. The set of potential service
point locations has been chosen randomly from vertices of the street network that are located in the
considered taxi zones. Each use case of a user is associated with two SPRs representing the origin
and destination of a trip chosen uniformly at random. Suitability values for locations w.r.t. SPRs
are again calculated via a sigmoid function based on the distance between the SPR’s geographic
location and the respective service point location. The MAN benchmark group also consists of 30
instances in total with each instance having 100 potential service point locations and 2000 users.
Additionally, each instance will be evaluated with different budget levels b [%] € {30, 50,70} such
that about b percent of the stations can be expected to be opened.

7 Computational Results

All test runs have been executed on an Intel Xeon E5-2640 v4 2.40GHz machine in single-threaded
mode. Gurobi 9.1° was used to solve the MILP models in the OC. We compare our COA with the
LNS, denoted in the following as COA[LNS]|, to the COA from [2] that uses the MILP (3)—(10)
as optimization core and henceforth denoted as COA[MILP]. Since COA[LNS] always uses the
current best solution X* as initial solution, we also set X* as starting solution in the MILP solver.

We present the results of COA by providing snapshots at different levels of performed user
interactions. In [2] we have argued that at most I)® =3 . (|{v | w(r,v) > 0}| 4 1) interactions
per user are required to completely derive all suitability values of user v € U. Let I, be the
number of user interactions of user u € U performed within COA to generate some solution. Then,
I =100%- (>, ety Lu/IJB)/m, refers to the relative average number of performed user interactions
relative to IV over all users. Results are presented in an aggregated way at various interaction
levels 1) by selecting for each instance the COA iteration at which I is largest but does not exceed 1.

First, we provide some general information about the performance of COA[LNS]. Table 1 shows
for each instance group at different interaction levels the average number of performed destroy and
repair iterations niter, the average time in seconds required for finding the best solution t*[s],
and the average total time in seconds until the LNS terminated ¢[s]. We can see that the LNS
terminates within 43 to 80 iterations on average and usually terminates within three seconds for
the CSS instances and within eight seconds for the MAN instances. While the total number of
iterations is relatively low, we later show in Table 2 that the solutions generated by the LNS are
almost optimal w.r.t. the presented instances. The number of iterations performed tends to decrease
as the number of performed user interactions increases while the total runtime increases in each
iteration for the MAN instance but stays almost constant for the CSS instances. The decreasing
number of iterations can be explained by the LNS being warm-started with the so far best found
solution X*. Moreover, as the number of user interactions increases, COA is able to identify more
locations relevant to the SPRs of the use cases of the users, resulting in a higher number of arcs
between the nodes in the service point layer and the nodes in the SPR layer of the respective
evaluation graph. Therefore, the number of iterations until the LNS converges decreases while the
time for performing one iteration increases.

Next, we investigate COA runs in which we apply in each iteration both, the LNS and the
MILP, for solving the exact same GSPDP instances w.r.t. o as well as the initial solution X*.

3 https://github.com/DeloitteDigitalAPAC/Light0SM. j1
4 https://data.cityofnewyork.us/Transportation/2016-Yellow-Taxi-Trip-Data/k67s-dv2t
5 https://www.gurobi.com/
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Table 1: Results of COA[LNS].
CSS
(n,m) (100, 500) (100, 1000) (200, 1000) (200, 2000) (300, 1500) (300, 3000)
Y miter t7[s] U[s] miter t7[s] t[s] miter t7[s] t[s] miter t7[s] t[s] Miter L7[s] t[s] miter 7[s] [s]

40 50 0.21 0.87 62 0.96 2.08 60 0.21 0.61 76 137 231 59 0.35 0.66 75 1.32 1.99
50 51 0.27 1.09 67 1.18 2.82 67 0.48 1.05 68 1.03 242 65 0.50 0.94 71 132 2.34
60 46 0.22 1.17 58 1.09 3.09 58 0.41 1.17 59 1.01 2.74 66 0.61 1.19 65 1.47 2.96
70 47 0.25 1.39 53 0.79 3.09 50 0.30 1.27 58 1.18 3.07 64 0.56 1.22 64 1.45 3.27
80 45 0.18 1.51 48 0.44 2.78 45 0.16 1.16 50 0.59 2.80 56 0.47 1.33 59 1.14 2.98
90 43 0.10 1.48 44 0.25 2.64 45 0.17 1.19 49 0.60 2.73 46 0.22 1.17 44 0.43 2.51

MAN
b 30% 50% 70%
Y Niger t°[s] t[s] Miter t°[s] t[s] niter t7[s] t[s]

40 78 219 3.85 74 1.58 3.35 59 0.65 1.76
50 80 3.70 6.12 75 2.76 525 55 1.10 3.30
60 78 4.22 820 72 3.72 721 63 2.00 5.02
70 65 3.40 8.18 64 3.10 7.74 54 1.51 5.62
80 55 2.62 7.65 58 293 812 54 1.93 6.74
90 49 140 7.24 48 1.27 735 46 0.73 6.09

The MILP solver is able to find optimal solution in all cases, but at the expense of typically much
longer running times. Note however that only the solution generated by the LNS is further used
for the next iteration in COA. Table 2 shows the average percentage gaps between the objective
values of the best solutions found by the LNS and respective optimal solutions w.r.t. f(_), denoted
by gap [%], the average total running times in seconds of the LNS ¢[s], the average times t3;[s]
needed by the MILP solver required for reaching a solution with at most the same objective value
as the solution obtained by the LNS, as well as the average total times ty;[s] in seconds of the MILP
solver for determining a proven optimal solution. Bold values indicate best times w.r.t. ¢,¢3;, and
ty. First, we can see that the solutions generated by the LNS are on average only about 1% worse
than an optimal solution for most instance groups. Next, the table shows that for CSS instances
with a n/m ratio of 1/10, the MILP solver needs significantly more time for finding good solutions.
Note that these instances have been designed in such a way that users behave less similar resulting
in more complex instances. Nonetheless, the LNS significantly outperforms the MILP w.r.t. all
instance groups. For all instance groups the LNS requires significantly less time on average to
terminate than the MILP needs to reach a solution of the same quality as the solution obtained
by the LNS. Additionally, Table 2 especially highlights how much more time the MILP requires
for improving a solution at the same quality as the best found LNS solution to a provable optimal
solution. Moreover, further tests have shown that most of the time the LNS is able to identify its
best found solution while the MILP solver has still not yet solved the root relaxation in the same
amount of time.

Finally, we want to compare independent COA[MILP] and COA[LNS] runs, and thus the impact
of the in general slightly worse intermediate solutions of the LNS on the overall results of the two
COA variants. For this purpose Table 3 shows for each interaction level the average optimality
gaps between the best found solution during the optimization to an optimal solution w.r.t. the
original objective f for COA[LNS| (gapy[%]) as well as COA[MILP] (gapm[%)]). The table shows
that small differences in the solution quality w.r.t. fo translate to slightly larger differences w.r.t.
f. With the exception of the MAN instance group with b[%| = 30, the solutions generated by
COAJLNS] are usually at most 3% off from the values obtained by COA[MILP]. In most cases,
the average differences are around 1% or less. Hence, in general it can be concluded that the LNS
substantially outperforms the MILP in terms of computation time while still being able to generate
almost optimal solutions.
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Table 2: Times required by the LNS, times the MILP solver needed to obtain a solution with at
least the same quality as the solution of the LNS, as well as the total time required by the MILP
to find a proven optimal solution. Additionally, the optimality gaps between the LNS solutions and

An LNS for a Cooperative Optimization Approach

respective optimal solutions are also shown.

Css
(100, 500) (200, 1000) (300, 1500)
¥ t[s] tals] tmls] gapg (%] tls]  thils] tmls] gaps %] t[s]  thils] twls] gapj, (%]
40 0.87 458 6.50 091  0.61 241 3.90 0.65  0.66 297 4.01 0.08
50 1.09 4.03 7.68 0.90  1.05 3.60 527 027  0.94 359 431 0.10
60 1.17 5.50 7.47 0.78  1.17 332 5.12 019 1.19 3.67 4.62 0.07
70 1.39 6.65 8.10 0.64  1.27 375 481 0.12 1.22 3.14 3.74 0.07
80 1.51 574 7.04 044 116 448 597 0.08  1.33 3.28 4.40 0.04
90 1.48 548 6.73 033 119 411 5.6 0.06  1.17 458 5.30 0.03
Css
(100, 1000) (200, 2000) (300, 3000)
Yo tls] tuls] tmls] gapg (%] tls]  tuls]  tmls]  gapp (%] tls]  tuls]  tmls]  gapj %]
40 2.08 21.87 37.42 215  2.31 3279 92.15 124  1.99 26.04 85.61 0.81
50 2.82 28.03 50.51 1.97  2.42 37.61 90.11 1.07  2.34 39.84 101.52  0.57
60 3.09 3560 59.04 145  2.74 3647 12667  0.89  2.96 38.34 130.05  0.47
70 3.09 4295 67.34 174  3.07 40.48 111.96  0.84  3.27 4341 136.93  0.36
80 2.78 4357 69.94  1.83  2.80 40.98 120.07  0.90  2.98 43.78 137.76  0.37
90 2.64 40.09 7498 137 273 41.33 12332  0.78  2.51 63.56 149.78  0.37
MAN
30% 50% 70%
Yo t[s] tuls]  tmls]  gapp (%] tls]  thls]  twmls]  egapp (%] tls]  thils]  tmls]  gapj, [%]
40 3.85 6721 32646 215  3.35 17.24 53.54 0.87 176 6.36 1071  0.21
50 6.12 80.31 32853 136  5.25 16.76 95.43 059  3.30 10.20 1529  0.11
60 8.20 131.28 368.28  1.19  7.21 24.36 89.15 043  5.02 1459 21.54  0.07
70 8.18 140.34 37546  1.06  7.74 24.86 108.59  0.35  5.62 13.22 21.73  0.06
80 7.65 160.13 414.39  1.12  8.12 27.70 108.01  0.34  6.74 18.00 24.43  0.05
90 7.24 15444 41155  1.29  7.35 4343 10270  0.27  6.09 13.03 17.46  0.03
Table 3: Quality of solutions generated by COA[LNS] and COA[MILP].
CSS
(n,m) (100, 500) (100, 1000) (200, 1000) (200, 2000) (300, 1500) (300, 3000)
¥ gapL[%] gapm[%] gapL[%] gapwm|[%] gapL|%] gapwm[%] gapL|%] gapm[%] gapL|%] sapm[%)] gapL|%)] gapw|%]
40 346 298 11.92 9.57 164 1.21 434 281 054 051 281  2.36
50 206 1.50 7.34 472 081 0.62 286 1.90 043 031 187  1.27
60 1.62  0.63 431 229 045 0.36 221 1.20 030 0.20 131  0.72
70 120 0.27 411 1.61 022 012 156 0.47 019 0.11 081  0.28
80 066 0.18 272 0.92 015 0.05 130 0.18 0.09 0.04 058 0.15
90 043 0.01 195 0.08 008 0.02 095 005 006 0.0l 044 0.03
MAN
b 30% 50% 70%
¥ gapL|%)] gapm[%)] gapL|%| gapm|%)| gapL|%| gapm|%)]
40 861 3.46 358  3.46 1.32  3.46
50 514 1.88 219 1.88 0.77  1.88
60 3.32 1.14 141 1.14 046 1.4
70 253  0.63 086 0.63 0.25  0.63
80 2.03 0.26 054 0.26 0.12  0.26
90 1.77 0.10 033 0.10 0.05 0.10

8 Conclusion and Future Work

We presented a large neighborhood search (LNS) to be used as optimization core in a coopera-
tive optimization approach (COA) for the general service point distribution problem (GSPDP) in
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mobility applications. While the LNS follows the traditional destroy and repair principle, a major
challenge was to (a) effectively guide the repair heuristic to produce promising new solutions and
to (b) efficiently calculate the surrogate objective function for modified solutions in an incremental
way. Both was achieved by introducing the evaluation graph, which stores relevant intermediate
results allowing efficient updates when stations are added to or removed from the current solution.
In particular, the evaluation graph provides an effective way to keep track of how much impact each
location in the solution has on its respective objective value. The efficient update possibility also
allows to consider a larger amount of locations during the destroy procedure. The performance of
the LNS within COA was tested on artificial instances as well as instances derived from real-world
data and was compared to the original COA with its MILP-based optimization core. Results show
that at the cost of a slight deterioration of usually not more than one percent in the quality of the
solutions, the LNS can outperform the MILP w.r.t. to computation times by orders of magnitudes.
In future work it seems promising to also consider other metaheuristic approaches, such as an evo-
lutionary algorithm that uses the evaluation graph for efficiently recombining solutions. Moreover,
the GSPDP it is still a rather abstract problem formulation, and it would be important to extend
it as well as the solving approach to cover further relevant practical aspects such as capacities of
stations and time dependencies of users.
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1 Introduction

Optimization problems have been growing in a big way in the last decades, causing the emergence
of more metaheuristics (MH) that try to solve NP-Hard combinatorial optimization problems. The
premise of the No Free Lunch Theorem [1,2] incentives us to develop increasingly robust opti-
mization algorithms that present and high feasible, quality solutions in reasonable computational
times.

To develop more robust algorithms, different techniques used in MH can be distinguished. First,
there is the hybridization of mathematical programming with MH or also known as ” Matheuristics”
[3] There are methods that interrelate MH with simulation problem, also known as ” Simheuristics”
[4]. There are also hybridization methods between MH techniques that combine their exploration-
exploitation components [5]. Currently, the area that is in constant development and will continue
to develop for a couple of years more, learnheuristic is the interaction of MH with learning tech-
niques, where it has been observed in several studies that these techniques support operators in
various ways to improve their performance [6-8].

From this particular case, this work presents the incorporation of SARSA to determine a specific
action: the selection of binarization schemes when solving binary domain problems. A comparison
is made between the proposed implementation of the new Binary SARSA-Sine Cosine Algorithm
(BS-SCA) and the work presented by Cisternas-Caneo F. et al. in [9], where in this occasion the
binarization selector is Q-Learning. The problem to be solved is Set Covering Problem with 45
instances to be evaluated, it can be determined that the proposed implementation with SARSA
has a statistically significant better performance.

The paper is organized as follows: In section 2 we raise points in favor of why it is worthwhile to
implement reinforcement learning techniques with swarm intelligence algorithms. In section 3 we
present the reinforcement learning techniques belonging to the machine learning area: Q-Learning
and SARSA. Our proposed BS-SCA as a new algorithm is presented in section 4. Finally, the
results obtained are evaluated and analyzed and a conclusion is drawn in sections 5 and 6.

2 Swarm-Intelligence Algorithms

Swarm Intelligence Algorithms are regularly based on interesting behaviors found in nature. In
particular, in those situations that involve behaviors carried out collectively by some biological
systems, such as animals or insects. That is why this type of algorithms are based on the study of
self-organized and distributed systems, since they manipulate a population of agents with limited
individual capacity where each of which reacts with its environment and can modify it in order to
carry out an intelligent collective behavior. This ability allows communication between agents, and
when they perceive changes in their environment, they interact locally with other agents. This leads
to the emergence of a global behavior giving agents the ability to solve highly complex problems.

MH have different elements depending on the metaphor they represent. Although they are
generally composed of an instance, parameters, operators, population, local search, evaluation, ini-
tialization, and decision variables [7]. For the definition of the parameters a considerable number of
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experiments are carried out that will allow their values to be adjusted. This requires the dedication
of considerable time and an imbalance between the exploration and exploitation of MH. That is
why the need arises for the integration of dynamic elements in the algorithms so that these are
adjusted during the execution of the iterations. In this paper, SARSA and Q-Learning are used to
perform a dynamic selection of operators.

2.1 Hybrid-Metaheuristics

A hybrid MH is described as the combination of a metaheuristic algorithm and a different learning
algorithm, for instance, matheuristics, Machine Learning Programming, Reinforcement Learning
(RL) techniques [5]. For this work we will focus on the hybrids generated with RL, where we find
two groups: RL supporting MH, or MH supporting RL.

Focusing on the first group mentioned above, two lines of research are shown in the work of
Garcfa et al. [10]. First, we find the integration of RL techniques as the replacement of an operator,
such as the handling of a population, local search, and parameter tuning. Second, is to use RL
as a selector of a set of MH, choosing the most appropriate one depending on the problem to be
approached.

When using RL as a selector, we can divide this category into three groups. The first is algo-
rithm selection that chooses from a set of techniques for the problem, in order to obtain better
performance for a set of similar instances [11]. Secondly we find the hyperheuristic strategies,
where their goal is to use the MH to cover a set of problems. And finally we find cooperative
strategies, which combine algorithms sequentially with the objective of improving the robustness
of the solution.

We consider worthy of mention the following reasons of why hybridization is advantageous:

— It makes the MH adaptive allowing the algorithm to be applicable to different problems.

— It does not require complete information about the problem, since reinforcement learning mod-
els learn by collecting experience [12].

— By using independent learning agents [13] allows, in some cases, the computational cost to be
lower. Since only one update formula is used in each step.

— If general features are used, the information learned by the reinforcement learning can be used
in other parts of the same problem [14].

— The behavior of various reinforcement learning methods end in optimal action state pairs [15]
which can be exploited. For example, one can see how the policy choosing the next action make
progress at each step.

3 Reinforcement-Learning Techniques

The learning process in this technique lies in maximizing the value function, as it tells us how
fruitful the consequence of the action taken by the agent will be from a state. The expected reward
function R; is composed of both the current rewards obtained and the discounted future rewards.
The future reward from the passage of time ¢ is given by the following equation (1).

Ry=) " reijp (1)
=0

Where « € [0, 1] is the discount factor, r; is the reward when an action is taken at time ¢, and
n is often regarded as the time when the process terminates. Hence, the agent’s goal is to learn
a policy capable of maximizing long-run rewards by interacting with the environment based on
one’s own experience. Thus, at each step ¢, starting from the state s;, the agent has to compute
as follows the value of the action-value function: Q™ (s, a) for each possible action a; on the basis
of the policy 7. The policy 7, can be defined as in eq. (2):

Q" (s,a) =P {R; | st = s,a; = a} (2)

where P {R; | st = s,a; = a}. Now the agent aims at obtaining the optimal state-action
function Q*(s,a). Then two methods called Q-learning and SARSA will be compared to get the
optimal state-action value function.
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Q-Learning is the best known reinforcement learning algorithm [9,16] and is an off-policy
method, i.e., the agent selects action a independent of the environment where it is executed. When
the agent selects an action and executes it in the environment a perturbation is generated. The
impact of this perturbation is judged through the reward or punishment (r) to decide which is the
next state s;11 of the environment. The way to represent the update equation mathematically is

eq. (3):

Qstyar) «— (1 — ) - Q(se,a1) + - [r + v - mazQ(se41, art1)] (3)

where « represents the learning rate, - is the discount factor, r is the immediate reward or
penalty received, and maxQ(s¢11,a:+1) tells us that as11 is the best action for state sy11. This
tells us that the new value of the state-action function is not only related to the reward or punish
received, but also to the best estimated action for the next state.

Instead, SARSA is an on-policy method [15], the agent learns the value of the state-action
pair based on the performed action, in other words, when the value of the current state-action
is updated, the next action a;y; will be taken. Unlike Sarsa, in Q-Learning the action a;41 is
completely greedy. Based on this, the state-action value update equation is defined as in eq. (4):

Q(st,a1) «— Q(st,a¢) + - [r+ 7 Q(St+1, ar41) — Q(8¢, ar)] (4)

In fact, the procedure of forming the Q-table is the same for both algorithms. The only difference
between them is the update rule that is being followed in every step, equations (3) and (4). The
different update rule enables SARSA to learn faster than the Q-learning algorithm. However, this
makes SARSA a more conservative algorithm and the probability of finding the optimal policy is
higher for Q-learning.

3.1 Reward Function

The big question when using reinforcement learning methods is: How to reward or punish the
actions performed by the agent?. The balance between reward and punishment achieves an equal
variation of the selection of actions, so that the best action found is more reliable.

Different learnheuristics have been found in the literature in which MH incorporate reinforce-
ment learning techniques as a machine learning technique. The classical reward function used by
these learnheuristics is adapted to the behavior of the MH.

For instance, we will use a simplified version of the version proposed by Yue Xu and Dechang
Pi [17] for optimal topology selection in particle swarm optimization. The simplified performance-
oriented version of the MH considers as reward value +1 when fitness is improved or 0 otherwise.
As a result, the reward or penalty visible in equations (5) and is born where only the reward is
given. The type of reward mentioned above is shown in table (1).

Table 1. Types of Rewards

Reference ‘ Reward Function

(17]

()

N +1, if the current action improves fitness
"0, otherwise.

4 Binary SARSA - Sine Cosine Algorithm

Sine Cosine Algorithm (SCA) [18] is a swarm metaheuristic of recent interest to researchers for
solving complex optimisation problems. While it is a metaheuristic that provides great results,
it still falls into the classic problem of swarm metaheuristics, falling into premature convergences
which implies falling into local optima [19]. Recent works [9, 20, 16], the authors propose ambidex-
trous metaheuristics [21, 22] where their main objective is to improve decision making during the
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optimisation process, which translates into improving the exploration and exploitation balance, i.e.
avoiding premature convergence and thus improving the solutions obtained.

The authors in [9, 20] propose the incorporation of Q-Learning to Sine Cosine Algorithm as an
intelligent binarization schemes selector mechanism to solve discrete optimisation problems [23].
Our proposal is to replace Q-Learning by another intelligent selector mechanism such as SARSA
and compare both techniques performing the same task, selecting binarisation schemes with the
aim of improving the major problem of SCA, premature convergence.

As proposed in [20], the states used in SARSA are the phases of the MH, i.e., exploration
and exploitation. The estimation of these states is done by means of diversity metrics which allow
quantifying the dispersion of individuals in the search space. The metric used in this work is the
Dimensional-Hussain Diversity [24] and is defined as follows:

l n
Div = ﬁZZﬁd—xﬂ (6)

d=11i=1

Where n is the number of search agents in the population X, z¢ is average of the d-th dimension,
and [ is the number of dimension of the optimization problem.

This diversity quantification is calculated iteration by iteration and to determine whether
the population has an exploration or exploitation behavior the equations proposed by Morales-
Castatieda et. al. in [25] are used. There they propose that the percentage of exploration (XPL%)
and the percentage of exploitation (XPT%) is given as follows:

|D’L’U})— Divmam|> % 100
Wmazx

DZ"Ut
Divm,am

(7)

By obtaining these percentages, the phase in which the MH is found is determined as follows:

XPLY% = < > x 100 , XPT% = <

Exploration if XPL% > XPT%

next state = {Ezploitation if XPL% < XPT% ®

The proposal of this work is shown in Algorithm (1). In line 1 we initialise the Q-values of
the Q-Table, in lines 4-5 we determine the initial state (exploration or exploitation) of SARSA, in
line 7 we select an action from the Q-Table for the corresponding state, in line 16 we execute the
selected action and observe its consequences from the obtained fitness, in lines 17-18 we determine
the next state of SARSA, and finally in line 19 we update the Q-value of the selected action from
the SARSA equation (4).

5 Experimental Results

The results are shown in the table (2), which displays the name of each instance resolved in the
first column and the optimum value of each instance in the second column. While the following
6 columns present the best results (Best), average results (Avg), and RPD according to Eq. 9
for each of the instances and both versions: BS-SCA and BQ-SCA. The comparison is performed
using the algorithm proposed by Cisternas-Caneo et al. [9], using a version of SCA hybridized with
Q-Learning.. The last two rows of the table show the average values of all cases and the p-value of
the test of Wilcoxon Mann-Whitney [26]. In order to establish which of the two hybridized versions
is superior for this collection of situations, the test lets us to assess if the outcomes achieved differ
considerably.

_ 100 (BOest Opt). )
't

The total number of instances used to solve the Set Covering Problem with Beasley’s OR-
Library instances was 45. These cases were run with 40 populations and 1000 iterations, with a
total of 40,000 calls to the objective function, as used in [27]. The code was written in Python
3.8 and executed using the free Google Colaboraty service [28]. The following parameters were
specified for the SARSA and Q-Learning algorithms: v = 0.4 and a = 0.1.

The exploration-exploitation graphs obtained: Fig. 1 and 2 according to section 4, do not show
similar behaviors to those presented by Morales-Castanieda et al. in [25], despite the fact that our

RPD
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Table 2. Results obtained by BS-SCA and BQ-SCA solving SCP

BS-SCA BQ-SCA

Inst. Opt. Best Avg RPD Best Avg RPD
4.1 429 432 434.0 0.7 435 4427214
4.2 512 |527  535.9 2.93 |537  553.71 4.88
4.3 516 524 529.0 1.55 |534  552.03 3.49
4.4 494 |502 515.12 1.62 |514  530.44 4.05
4.5 512 1524 530.14 2.34 (537  553.17 4.88
4.6 560 |564 570.56 0.71 |573  588.68 2.32
4.7 430 |435 439.25 1.16 |441 449.77 2.56
4.8 492 |500 502.57 1.63 |509  516.39 3.46
4.9 641 |665 677.14 3.74 683  697.48 6.55
4.10 514 518 519.57 0.78 521  533.88 1.36
5.1 253 256 266.22 1.19 (264  272.754.35
5.2 302 318  326.27 5.3 |327  335.58 8.28
5.3 226 230 231.1 1.77 |230 235.62 1.77
5.4 242 247 250.22 2.07 |250 254.6 3.31
5.5 211 |213 215.62 0.95 (218 221.46 3.32
5.6 213 |218 222.12 2.35 (221 231.26 3.76
5.7 293 (297 305.11 1.37 (304 316.4 3.75
5.8 288 1290 294.56 0.69 |296  301.32 2.78
5.9 279 (283 285.14 1.43 284  293.42 1.79
5.10 265 271 273.0 2.26 274  281.3534
6.1 138 (143 146.0 3.62 |144 148.16 4.35
6.2 146 151 152.56 3.42 (152  159.06 4.11
6.3 145 148 149.5 2.07 (149 151.29 2.76
6.4 131 131 133.6 0.0 (133 136.03 1.53
6.5 161 (165 171.82 2.48 (173 183.26 7.45
a.l 253 260 264.22 2.77 |266 269.42 5.14
a.2 252 |254 266.2 0.79 |267 273.8 5.95
a.3 232 |238 244.25 2.59 |245 248.87 5.6
a.d 234 1241 246.5 2.99 (245 252.61 4.7
a.n 236 242 245.0 2.54 (247  251.27 4.66
b.1 69 |69 70.9 00 |71 72.68 2.9
b.2 76 |76 77.8 0.0 |78 81.35 2.63
b.3 80 (80 84.4 0.0 |82 83.87 2.5
b.4 79 |82 83.3 3.8 |83 84.9 5.06
b.5 72 |72 73.12 0.0 |73 75.03 1.39

c.l 227 (237 240.5 4.41 (246  251.85 8.37
c.2 219 230 235.44 5.02 (237  242.89 8.22
c.3 243 (252 254.88 3.7 (259  263.25 6.58
c4 219 |228 232.254.11 (230 236.1 5.02
c.5 215 |222 225.5 3.26 |229 2342 6.51

d.1 60 |62 64.6 3.33 |64 65.97 6.67
d.2 66 |67 73.27 1.52 |69 69.97 4.55
d.3 72 |75 81.8 4.17 |76 78.86 5.56
d.4 62 |62 64.6 0.0 |63 64.16 1.61
d.5 61 |62 69.89 1.64 |64 66.35 4.92
Average 259.18 263.88 2.11 |264.38 271.27 4.23
p-value 0.00
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Algorithm 1 Binary S-Sine Cosine Algorithm

Input: The population X = {X1, X2,..., Xn}
Output: The updated population X' = {X{, X3,..., X, } and Xpest

1: Initialize Q-Table with ¢o
2: Initialize random population X
3: Set initial r1
4: Calculate Initial Population Diversity (X) using equation (6)
5: Define the initial state using equation (8)
6: for iteration (t) do
7 a : Select action from Q-Table
8: for solution (i) do
9: Evaluate solution X; in the objective function
10: for dimension (j) do
11: Update Pf, where P]t = Xbest,j
12: Randomly generate the value of ra, 73, 74
13: Update the position of X ;
14: end for
15: end for
16: Binarization X with action ¢ and apply reward function
17: Calculate Population Diversity (X) using equation (6)
18: Define the next state using equation (8)
19: Update Q-Table using SARSA equation (4)
20: Update rq
21: Update Xpest
22: end for
23: Return the updated population X where Xpes: is the best result
proposal does not have similarities to the graphs presented by them, when observing the results

obtained it is determined that they are not random algorithms since they present variations in

th

6

eir exploration percentages.

100 100

80 80
60

60

40 40

20 20

0 0
ll] 260 460 660 860 10‘00 (I) 260 460 660 860 10‘00
Fig.1. SCP - Exploration and Exploitation Fig.2. SCP - Exploration and Exploitation
Graphic of instance 4.7 version BS-SCA Graphic of instance 4.7 version BQ-SCA
Conclusion

The results are encouraging because the performance of a binarization selector reduces tuning
times by not having to assess the combinations of various binarization plans in the literature.

The application of learning techniques to metaheuristics has made a significant contribution to

both the improvement of fitness and the attainment of a better exploration-exploitation balance.
SARSA has been used as a binarization selector in the BS-SCA algorithm resolving 45 instances of
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the OR-Library of the Set Covering Problem. When compared to its more closely related BQ-SCA
version, it has been demonstrated that BS-SCA achieves higher quality results on all the instances,
and that these results are statistically significant better under the Wilcoxon-Mann-Whitney test.

On the other hand, it was observed that, when observing in detail the graphs used for explo-
ration and exploitation there is a similar convergence, but with BS-SCA the values tend to have
smaller magnitude changes, with greater occurrence, and much more defined which may indicate
that they are more efficient in solving this problem.

As future works, in addition to the implementation of SARSA in other metaheuristic tech-
niques, we should parameterize the results obtained by exploration-exploitation graphs. Although
it provides valuable and useful information about the search process, it still needs a comparative
metric and in turn, that this same metric can be incorporated in the agent learning process.

7 Acknowledgements

Broderick Crawford is supported by Grant CONICYT/FONDECYT/REGULAR/1210810. Ri-
cardo Soto is supported by Grant CONICYT/FONDECYT/REGULAR/1190129. José Lemus-
Romani is supported by National Agency for Research and Development (ANID)/Scholarship
Program/DOCTORADO NACIONAL/2019-21191692. Marcelo Becerra-Rozas is is supported by
National Agency for Research and Development (ANID)/Scholarship Program/DOCTORADO
NACIONAL/2021-21210740.

References

1. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE transactions on
evolutionary computation 1 (1997) 67-82

2. Wolpert, D.H., Macready, W.G.: Coevolutionary free lunches. IEEE Transactions on evolutionary
computation 9 (2005) 721-735

3. Voss, S., Maniezzo, V., Stiitzle, T.: Matheuristics: Hybridizing metaheuristics and mathematical pro-
gramming (annals of information systems). (2009)

4. Juan, A.A.) Faulin, J., Grasman, S.E., Rabe, M., Figueira, G.: A review of simheuristics: Extending
metaheuristics to deal with stochastic combinatorial optimization problems. Operations Research
Perspectives 2 (2015) 62-72

5. Talbi, E.G.: Combining metaheuristics with mathematical programming, constraint programming and
machine learning. Annals of Operations Research 240 (2016) 171-215

6. Talbi, E.G.: Machine learning into metaheuristics: A survey and taxonomy of data-driven metaheuris-
tics. (2020)

7. Song, H., Triguero, 1., Ozcan, E.: A review on the self and dual interactions between machine learning
and optimisation. Progress in Artificial Intelligence 8 (2019) 143-165

8. Calvet, L., de Armas, J., Masip, D., Juan, A.A.: Learnheuristics: hybridizing metaheuristics with
machine learning for optimization with dynamic inputs. Open Mathematics 15 (2017) 261-280

9. Cisternas-Caneo, F., Crawford, B., Soto, R., de la Fuente-Mella, H., Tapia, D., Lemus-Romani, J.,
Castillo, M., Becerra-Rozas, M., Paredes, F., Misra, S.: A data-driven dynamic discretization frame-
work to solve combinatorial problems using continuous metaheuristics. In: Innovations in Bio-Inspired
Computing and Applications, Cham, Springer International Publishing (2021) 76-85

10. Garcia, J., Moraga, P., Valenzuela, M., Crawford, B., Soto, R., Pinto, H., Pefia, A., Altimiras, F.,
Astorga, G.: A db-scan binarization algorithm applied to matrix covering problems. Computational
intelligence and neuroscience 2019 (2019)

11. de Ledén, A.D., Lalla-Ruiz, E., Melidn-Batista, B., Moreno-Vega, J.M.: A machine learning-based
system for berth scheduling at bulk terminals. Expert Systems with Applications 87 (2017) 170-182

12. Sutton, R.: Advances in neural information processing systems: Vol. 8. generalization in reinforcement
learning: Successful examples using sparse coarse coding (1996)

13. Sutton, R.S.: Learning to predict by the methods of temporal differences. Machine learning 3 (1988)
9-44

14. Taylor, M.E., Stone, P., Liu, Y.: Transfer learning via inter-task mappings for temporal difference
learning. Journal of Machine Learning Research 8 (2007)

15. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT press (2018)

16. Tapia, D., Crawford, B., Soto, R., Palma, W., Lemus-Romani, J., Cisternas-Caneo, F., Castillo, M.,
Becerra-Rozas, M., Paredes, F., Misra, S.: Embedding g-learning in the selection of metaheuristic
operators: The enhanced binary grey wolf optimizer case. In: 2021 IEEE International Conference on
Automation/XXIV Congress of the Chilean Association of Automatic Control (ICA-ACCA). (2021)
1-6

109



17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Marcelo Becerra-Rozas et al.

Xu, Y., Pi, D.: A reinforcement learning-based communication topology in particle swarm optimization.
Neural Computing and Applications (2019) 1-26

Mirjalili, S.: Sca: a sine cosine algorithm for solving optimization problems. Knowledge-based systems
96 (2016) 120-133

kai Feng, Z., Liu, S., jing Niu, W., jian Li, B., chuan Wang, W., Luo, B., min Miao, S.: A modified
sine cosine algorithm for accurate global optimization of numerical functions and multiple hydropower
reservoirs operation. Knowledge-Based Systems 208 (2020) 106461

Crawford, B., Soto, R., Cisternas-Caneo, F., Tapia, D., de la Fuente-Mella, H., Palma, W., Lemus-
Romani, J., Castillo, M., Becerra-Rozas, M.: A comparison of learnheuristics using different reward
functions to solve the set covering problem. In: International Conference on Optimization and Learning,
OLA 2021. (2021) ARTICLE IN PRESS

Crawford, B., Leén de la Barra, C. Los algoritmos ambidiestros.
https://www.mercuriovalpo.cl/impresa/2020/07/13/full/cuerpo-principal /15/ (2020) Acceded
12-02-2021.

Lemus-Romani, J., Crawford, B., Soto, R., Astorga, G., Misra, S., Crawford, K., Foschino, G., Salas-
Ferndndez, A., Paredes, F.: Ambidextrous socio-cultural algorithms. In: International Conference on
Computational Science and Its Applications, Springer (2020) 923-938

Crawford, B., Soto, R., Astorga, G., Garcia, J., Castro, C., Paredes, F.: Putting continuous meta-
heuristics to work in binary search spaces. Complexity 2017 (2017)

Hussain, K., Zhu, W., Salleh, M.N.M.: Long-term memory harris’ hawk optimization for high dimen-
sional and optimal power flow problems. IEEE Access 7 (2019) 147596-147616

Morales-Castaneda, B., Zaldivar, D., Cuevas, E., Fausto, F., Rodriguez, A.: A better balance in
metaheuristic algorithms: Does it exist? Swarm and Evolutionary Computation (2020) 100671
Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is stochastically larger
than the other. The annals of mathematical statistics (1947) 50-60

Lanza-Gutierrez, J.M., Crawford, B., Soto, R., Berrios, N., Gomez-Pulido, J.A., Paredes, F.: Ana-
lyzing the effects of binarization techniques when solving the set covering problem through swarm
optimization. Expert Systems with Applications 70 (2017) 67-82

Bisong, E.: Google colaboratory. In: Building Machine Learning and Deep Learning Models on Google
Cloud Platform. Springer (2019) 59-64

110



Minimum Rule-Repair Algorithm for Supervised Learning
Classifier Systems on Real-valued Classification Tasks

Koki Hamasaki' and Masaya Nakatal!

Department of Electrical Engineering and Computer Science, Yokohama National University, Japan

1 Introduction

Learning Classifier Systems [14] (LCSs) are a paradigm of evolutionary rule-based learning meth-
ods. LCSs intend to produce accurate, maximally general, and thus explainable rules [15, 8]. Relying
on this advantage, many works have applied LCSs to data-mining tasks [5, 6, 21]. Technically, LCSs
are designed to generate a minimal rule-set that determines plausible outputs for given inputs.
Thus, each rule should accurately predict an output while covering as many inputs as possible. For
this purpose, rule-based learning evaluates a rule-fitness through interaction with an environment,
and then evolutionary computation, e.g., GA, generatively refines rules with fitness guidance.

While many branches of LCSs have been proposed thus far [22, 26], most works have extended
either one of the two basic LCSs: the XCS classifier system [28] and the UCS classifier system [4].
XCS is based on a reinforcement learning (RL) approach, and thus it is suitable for RL problem
domains, e.g., online-control [23]. XCS evaluates the rule-fitness with reward signals. In contrast,
UCS is an extension of XCS, and it uses a supervised learning approach, where both an input and
the correct output for it are sent to the system. Thus, UCS can be suitable for supervised learning
tasks, e.g., classification [4,12]. Note that XCS and UCS commonly use the steady-state GA as a
rule-evolution scheme. Consider the LCS’s advantage aforementioned, this paper studies UCS as a
data-mining tool for classification.

However, a restriction of LCSs (including UCS) is in less scalability of the system performance
against the input space size. For instance, the LCS performance significantly degrades when dealing
with high-dimensional and/or real-valued inputs [20, 17, 24]. To tackle this issue, Debie provided a
theoretical insight for UCS on high-dimensional problems [10]. He also proposed an ensemble learn-
ing scheme of UCS to boost the performance on real-valued classification tasks [11]. Urabanowicz
introduced some heuristics for UCS to improve the efficiency of rule-evolution (i.e., ExSTraCS) [27].
ExSTraCS successfully solves the 135-bit multiplexer problem with binary inputs. Some modern
works revealed the impacts of the lexicase selection [3] and the fine-tuning for hyper-parameters
[18] on the UCS framework. In addition, dimensional reduction techniques were used in XCS, e.g.,
feature selection [1, 2] and deep auto-encoder approaches [17, 24]; those approaches can be extended
to the UCS framework.

Although various extensions of UCS have been considered as aforementioned, there are very
few works that intend to repair inaccurate rules for the real-valued UCS framework. A possible
reason is that UCS is originally designed to evolve only accurate rules to construct a best action
map [4]. However, as another critical reason common to XCS, UCS should be designed to main-
tain a low frequency of the rule-production to avoid a problematic cover-delete cycle [9,7]. For
instance, the steady-state GA produces only two offspring rules per generation, which results in
a fundamental inefficiency of UCS. Here, the cover-delete cycle is one of the major difficulties to
design online learning-based LCSs, meaning that insufficiently-trained rules may be deleted due
to a high frequency of rule-production; and this cycle may frequently occur when each rule is less
general under a limited population size. Thus, a rule-repair strategy can be a possible reason to
provoke the cover-delete cycle.

Note that there are some rule-repair algorithms for XCS. In [16], Lanzi proposed a specify
operator for XCS with binary-input problems. His concept is to repair inaccurate rules identified
by the XCS’s reinforcement learning scheme. In detail, the specify operator replaces some don’t
care bits involved in a rule-condition with specific values of the input. This operator was applied to
the UCS framework [4]. In [13], Igbal presented a GP-based XCS and its rule-repair algorithm for
GP-based rule expression. Tadokoro introduced a local covering operator [25]. While this operator
does not intend to repair inaccurate rules, it produces new initial rules with a similar concept to

111



2 Hamasaki and Nakata

the specify operator. Although those related works show the effectiveness of rule-repair algorithms,
they have not been designed for UCS with real-valued inputs.

Accordingly, this paper presents a minimum rule-repair algorithm for UCS with real-valued
inputs on classification problems. Our rule-repair algorithm intends to improve the performance by
1) boosting the classification accuracy (i.e., the rule-fitness) of inaccurate rules and by 2) increasing
the frequency of rule-reproductions. Besides, we design our algorithm based on a minimum rule-
repair concept to avoid the problematic cover-delete cycle. That is, our algorithm repairs the
rule-condition with the minimum reduction of its rule-generality; the rule-condition is repaired so
that it excludes one incorrect input from a subspace covered by its rule-condition.

This paper is organized as follows. Section 2 describes the UCS framework for real-valued
inputs. Section 3 introduces our rule-repair algorithm. Section 4 tests UCS with our rule-repair
algorithm on real-valued benchmark classification problems. Section 5 empirically validates our
hypothetical insights. Finally, in Section 6, we summarize our contributions with future directions.

2 UCS for real-valued inputs

This section gives a description of the UCS framework for real-valued inputs @ = [z1,z9, -, 24),
where d is the problem dimension and x; € [0,1](i = {1,2,--- ,d}). This paper employs a lower-
upper representation as a rule-condition for real-valued inputs [30]. The rule-condition with this
coding represents a d-dimension hyperrectangle as its matching sub-space on the input space; and
thus its rule-generality can be measured with a volume of its hyperrectangle. Note that this paper
denotes a uniformly-sampled random value as r, and r € [0,1], if not stated differently; and all
rs used in equations are independently sampled. Note also that we introduce new mathematical
notations for the UCS framework, which is exactly the same as in the original working of UCS [4].

2.1 Rule parameters

A rule ¢l consists of a condition C' = {c1,co, - cq} and an action A, where a sub-condition ¢;
involves a lower /; and an upper w; both used for x;, i.e., ¢; = [l;,u;] (I; < g, I, u; €[0,1]). A rule
¢l can be matched to « if and only if I; < x; < w;,Vi € {1,2,--,d}, simply denoted by & € C in
this paper. The action A represents a class when its rule is executed.

The rule ¢l also has the following five main parameters; the number of correct classification
ct € Ny, which represents how many times ¢l belongs to [C]; the accuracy acc € [0, 1], which is a
classification accuracy of cl; the rule-fitness F € [0, 1], which is calculated from acc; the experience
exp € Ng, which represents the number of parameter-update times; the numerosity num € Np;
which is the number of subsumed rules to ¢l by a subsumption operator (see Section 2.2).

Suppose two rules ¢l; and cly both having the same action, ¢l; can be more general than cly
if and only if l1; < la; Aug; < w1y, Vi € {1,2,---,d}, simply denoted by cls.C' C ¢l;.C' in this

paper. All rules are contained in a population [P] with the maximum population size N.

2.2 Framework

The UCS framework is composed of the training phase and the test phase. During training, UCS
activates rule-parameter updates and the steady-state GA in order to produce the optimal rule-set
as a solution. During the test phase, it only determines an output based on the trained rule-set.

Training phase.

At the initial iteration ¢ = 0, UCS builds the population [P] as an empty set. For ¢ « t+1, UCS
receives an input @ together with its correct class A*. Then, it builds a match set [M] consisting
rules matched to x, given by;

[M] = {cl € [P] |z € cl.C}. (1)

Then, UCS further builds a correct set [C] and an incorrect set [IC], given by;

(2)

(€] ={ce[M]|cdA=A},
0] ={cle[M]|c.A# A} .
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Thus, [C] and [IC] are composed of (temporarily) accurate rules and inaccurate rules, respectively.
If [C] is empty, the covering operator takes place to produce a new rule with an initial setting
{A=A*ct=0,exp=0,F =0.01,num = 1}; and {; and u; for ¢; € C are initialized as;

li =zi—r-so,
{ (3)

u; =x;+7r-So,

where sg € [0, 1] is a hyperparameter that controls the initial rule-generality. Thus, € C is always
satisfied. Note that 0 < [; < wu; < 1.

Next, UCS updates rule parameters. First, ct is updated as ¢t < ¢t + 1 for each rule in [C].
Next, for all rules in [M], exp, acc, and F are updated. In detail, exp is updated as exp < exp+1
to count the update time; then, acc is updated by;

ct
acc = — . (4)
exp
Thus, acc represents the classification accuracy of cl. Then, the fitness F' is updated with expo-
nential reduction, given by;

F = (acc)” (5)

where v controls a selection bias in the steady-state GA.

Finally, the steady-state GA is applied to [C] to generate plausibly better rules. First, UCS
selects two parent rules from [C]; and it produces two offspring rules cli,cly as copies of the
corresponding parent rules except for {ct = 0,exp = 0, F = 0.01,num = 1}. Then, a crossover
operator is activated with a probability y; and this paper employs the uniform crossover. If the
crossover is activated, it may swap ci; € cli.C for ca; € clp.C' with a probability 0.5 for each

i={1,2,--- ,d}. Next, the mutation operator is also applied to each sub-condition of ¢l,.C (i.e.,
Cx,i, with a probability 4 (* can be 1 and 2)). In detail, I, ; and u, ; for ¢, ; may be mutated as;
lyi—7T-mog <05,
l*,i — " 0 . (6)
lyi+7r-mg otherwise,

{u*ir~m0 r<0.5,
’ Uy +7-mg otherwise ,

where my is a hyperparameter that controls a degree of the rule-generality; again, 0 <1, ; < u,; <
1. Then, two offspring rules are inserted to [P]; and rules may be deleted if the population size
|[P]| exceeds N. This paper uses the tournament selection with a tournament size 7.

A subsumption operator may be applied to the rules in [C] after updating the rule parameters
or to offspring rules after the steady-state GA. A rule can be subsumed by a more general rule
than it, provided that the more general rule is reliably accurate and sufficiently updated (i.e.,
acc > accy N exp > Ogyup); accy € [0, 1] defines the minimum classification accuracy the maximally
accurate rules must have; and 64, € N defines the minimum update time. In detain, for each rule
cl in [C] except for maximally accurate, maximally general rules cl*, cl* subsumes ¢l if ¢l.C' C
c*.C Ncl.A = cl*. A; then, the numerosity of cl* is updated as cl*.num < cl*.num + cl.num, and
cl is deleted from [P].

Test phase.

For a given input @, UCS builds the match set [M], where all actions a existed in [M] are
contained in [Ap]. Then, for each action a € [Ay/], it builds a subset [M,] which consists of rules
having the action a, given by [M,] = {cl € [M] | cl.A = a}. Finally, it outputs the best action A’
having the highest fitness, that is,

I
A —argagg)]é] Z c.F . (8)
cle[M,)
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3 Minimum rule-repair algorithm

In this section, we first introduce our concept of the minimum rule-repair algorithm. Then, the
detailed algorithm is described.

Subspace covered by rule @ Input that rule fails to correct classification

9 x9 x9 €9

4

uy U9 u

U9

Tl ksl sl ]
ll uy /1 uy l] up /] Ul

A B C D

Fig. 1. Examples of possible repair patterns of the rule-condition to eliminate a misclassified input (denoted
by the black dot). “A” represents the original subspace covered by a rule; “B”, “C”, and “D” represent
repaired subspaces by repairing {l1,u2}, u1, and l1, respectively. “D” can have the hightest rule-generality
in those examples.

3.1 Concept

As described in the previous section, given x at iteration ¢, the UCS framework does not intend
to utilize rules temporarily identified as inaccurate,(i.e., I’ € [!C]). However, such inaccurate rules
may contribute to the correct classification for other matched inputs. Consider ¢l’ misclassifies
some inputs @', its classification accuracy (cl’.acc), certainly improves if ¢l’.C' is repaired to match
inputs except for x’s. Thus, acc tends to improve by reducing the rule-generality.

However, this strategy(i.e., to reduce the rule-generality), provokes the problematic cover-delete
cycle under a restricted population size, as noted in Section 1. Thus, we here consider a conservative
approach to design our rule-repair algorithm. Our algorithm is designed to repair ¢l”’s rule-condition
with a possible minimum reduction of the rule-generality. Specifically, given x at ¢, we repair cl’.C
to eliminate @ from its matching sub-space represented by its rule-condition. That is, we target one
single input for each repair to avoid a drastic reduction of the rule-generality. In this case, we can
still consider various repair patterns of the rule-condition. Fig. 1 shows possible examples of repair
patterns on two-dimensional inputs @ = [z1, z2]; As shown in this figure, we can suppose possible
repair patters (“B”, “C”, and “D”); however, “D” can have the highest rule-generality in those
patterns. Technically, we do not need to repair both /; and u; and/or more than one dimension z;
to achieve the minimum reduction of the rule-generality.

Thus, our minimum rule-repair algorithm is designed to satisfy the following two conditions;
1) to repair the rule-condition to eliminate x from its matching sub-space, and 2) to repair either
l; or u; for one dimension z;.

3.2 Algorithm

Our rule-repair algorithm is activated after the rule-parameter update in the UCS framework.
First, we add a new rule-parameter rt € Ny, which denotes the latest update time its rule was
repaired. The initial value of 7t is set to 0 when a rule is generated by the covering operator or the
steady-state GA. Then, it selects and then repairs only sufficiently-updated rules. In detail, UCS
with our algorithm builds a repair set [R], given by;

[R] ={cl € [!C] | cl.exp — cl.rt > Oy} - (9)
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Thus, once a rule is repaired, we temporarily remove its rule from candidates for repair until its
rule-quality is estimated trustworthy. In other words, this boosts a stable convergence of rule-
parameters, and it also prevents a drastic reduction of the rule-generality.

Next, for each ¢l € [R], we randomly select a dimension index k from [1,2,--- ,d] to decide a
target sub-condition ¢ for repair; and then it generates new upper/lower candidates ik, iy, as;

{{k =z, + D, (10)
U =T — D 5

where a hyperparameter D € [0, 1] controls the minimum distance between a specific input value
rr and fk /tyg. Thus, cl’s rule condition can be guaranteed that it does not match x at ¢t when
either [, = lk or ur = uy. Note that D should be set to a relatively small value, e.g., D < 0.01,
to maintain a small reduction of the rule-generality; in Section 5, we empirically reveal the impact
of D. Next, we further select either [, or i to maintain the rule-generality as possible. Since the
other sub-conditions ¢;(i # k) are not repaired, a volume of the hyperrectangle specified by cl.C
changes dependent on the length of ¢; (i.e., ux — li). Thus, to maximize the rule-generality, it is
sufficient that we can use the candidate maximizing the length of ¢, that is;

lk<—ik ifuk—[k>ﬂk—lka (11)
U < U otherwise .
Note that as an exceptional case, we forcedly set uy to 4y if fk > uy, and vice versa; if fk > ug and
U < lg, we skip to repair the rule-condition, but this is the extremely rare case in our experiments.
Finally, rt is updated as 7t < exp. Algorithm 1 shows the pseudo-code of our algorithm.

Algorithm 1 Minimum rule-repair algorithm
1: Input: «, [IC]
2: for each ¢l € [!C] do
if cl.exp — cl.rt > 05y then
k < randomly sampled from [1,2,--- ,d]
Zk =xr+ D
Uy =x — D
if up — ik > Uy — lx then
lk < Zk
else
Uk < Uk
c.rt < cl.exp

—_ =

4 Experiment

This section tests our rule-repair algorithm on two real-valued benchmark classification tasks: the
real-valued multiplexer problem (RMUX) and the real-valued majority-on problem (RMOP).

4.1 Benchmark problems

Real-valued multiplexer problem.

The n-bit multiplexer problem (n-MUX) is originally used as a binary input classification
problem to validate the generalization capacity of XCS [28]. It has been extended for real-valued
classification tasks [29,20]. The n-MUX is defined over a binary string of n = k + 2¥; a decimal
number of the first & bits represents a position of one of the remaining 2* bits. Then, the correct
class is the bit pointed to by the first k£ bits. In n-RMUX, each attribute x; is binarized at the
common boundary 0.5(i.e., 0 if z; < 0.5 or 1 if 2; > 0.5) and then a correct class of the real-valued
input is determined with the same procedure of the n-MUX. Note that, the binarization boundary
is not a critical factor dependent on the problem difficulty, as the steady-state GA is designed to
independently change the sub-condition ¢; based on only its corresponding attribute. This paper
uses {6,11,20,37}-RMUXs to evaluate the scalability of the algorithm.
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Real-valued majority-on problem.

The n-bit majority-on problem (n-MOP) is also originally defined with binary inputs [13]. In
n-MOP, if the number of “1” exceeds the number of “0”, the correct class is 1; otherwise 0. This
paper extends n-MOP to a real-valued classification task; each attribute z; is also binarized at the
common boundary 0.5. The n-MOP and n-RMOP are highly overlapping problems, where LCSs
often suffer to improve the performance [13]. This paper uses {11, 15}-RMOPs.

4.2 Experimental settings

We employ the following experimental paradigm. One iteration involves a set of one training input
and one test input of the problem. For the training input, UCS activates the training phase to
produce the solution. For the test input, it activates only the test phase in order to evaluate the
system classification accuracy as the UCS performance. In addition, we evaluate the population
size (i.e., the number of rules in [P]) to evaluate the generalization capacity of UCS. The UCS
performance and the population size are reported as an average of 30 trials. We test UCS and UCS
with our rule-repair algorithm (denoted by “Ours”).

We use the following UCS parameter settings with respect to [20,4]; 8 = 0.2, 6 = 0.1,
v =10, ga = 25, x = 0.8, 04a1 = 20, s, = 20, accy = 0.99, Py = 0.8, p = 0.04,7 = 0.4,
sp = 1.0, and mg = 0.1. The subsumptions are turned on. For {6, 11, 20,37}-RMUXs and {11, 15}-
RMOPs, we set N and the maximum iterations to {800, 5000, 30000, 30000, 10000, 100000} and
{50000, 200000, 1000000, 1500000, 200000, 500000}, respectively. For our repair algoritm, we set
D =0.01.

4.3 Result

Figs. 2 and 3 summarize the performances and the population size. As shown in Fig.2, our rule-
repair algorithm successfully boosts the UCS performance on all the problems employed in this
paper. Specifically, our rule-repair algorithm improves the performance at early iterations, where
we can expect that many inaccurate rules exist in [!C]. For instance, it reaches almost the optimal
performance after 100,000 iterations on 11-RMUX, but UCS requires 200,000 iterations to reach
it. The performances on RMOPs do not reach the optimal performance due to the complexity of
the overlapping problem, which is a similar tendency to existing works [13,19].

A possible drawback of our rule-repair algorithm is to increase the population size since it
enhances a bias to produce specific rules with less rule-generality. As shown in Fig. 3, this insight
can be observed in early generations. However, our rule-repair algorithm successfully prevents the
increase of the population size over iterations. Besides, it produces a more compact population than
that of UCS on 6,11-RMUXSs. Note that the population size reaches the maximum population size
N if the cover-delete cycle occurs. This tendency can be observed for both UCSs on RMOPs, and so
our rule-repair algorithm itself does not provoke the cover-delete cycle. We suspect that N should
be further increased to cover various niches defined in RMOPSs [19]. Thus, we can empirically
confirm that our rule-repair algorithm successfully prevents the cover-delete cycle.

Finally, we further give empirical insights to confirm the efficiency of our rule-repair algorithm.
Fig. 4 shows the summation of numerosity of rules in [IC] over iterations(i.e., 3 cncy ¢l-num), on
11-RMUX and 11-RMOP. Note that the population involves many inaccurate rules if che[!c] cl.num
is a large value since inaccurate rules tend to be over-generalized; and so those rules frequently
match inputs, resulting in the increase of the che[!c} cl.num. From the figure, it is obvious that
our rule-repair algorithm contributes to decreasing the summation of numerosity of [IC]. This
means that our rule-repair algorithm successfully reduces the inaccurate rules by improving their
classification accuracy.

In summary, our rule-repair algorithm successfully repairs the inaccurate rules, and thus it
boosts the UCS performance while preventing the increase of the population size as well as the
cover-delete cycle.

5 Analysis

This section presents analytical insights into our minimum rule-repair strategy.
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Fig. 2. The performances.

5.1 Analysis of the number of sub-conditions to be repaired.

One of our strategy to minimize the reduction of the rule-generality is to repair either [; or w;
for one sub-condition ¢;. In this subsection, we validate the impact of this strategy. In detail, we
here extend our algorithm to repair ¥ sub-conditions at the same time, where ¥ is the number of
sub-conditions to be repaired; and a default setting is ¥ = 1. More specifically, we insert a “for”
loop (i.e., for i =1 to W) between line 3 and 4 in Algorithm 1; and each dimension index k is
randomly sampled with no duplicates.

We here compare the performances of UCS with the rule-repair algorithm for ¥ = {1, 3,5}.
Note that the rule-generality of repaired rules should be rapidly decreasing with the increase of V.
Figs. 5 and 6 show the performances and the population size on 11, 20, 37-RMUXs with the same
experimental settings (see Subsection 4.2), respectively. As shown in those figures, the performance
gradually degrades with the increase of ¥. This tendency is clearly highlighted with the increase
of the problem dimensions d = {11,20,37}. Besides, the population size with ¥ = 1 decreases
slightly faster than ¥ = {3,5}. This indicates that our minimum rule-repair strategy (i.e., ¥ = 1)
successfully discovers the optimum rules faster than the other settings in this paper. Accordingly,
those experimental results empirically confirm our hypothetical insight; the rule-condition should
be repaired with as minimum reductions of the rule generality as possible.

5.2 Analysis of the minimum distance D.

Next, we analyze the impact of the hyperparameter D, which controls the minimum distance
between a specific input value x; and fk (or 4y). As noted in Section 3, the reduction of the rule-
generality can be also minimized in terms of D, e.g., D = 107!, Thus, according to our hypothesis
(i-e., to minimize the reduction of the rule-generality), D may be an important parameter dependent
on the performance.

We here compare the performances with D = {0.001,0.01,0.1}. Fig. 7 shows the performances
on 11, 20, 37-RMUXs with the same experimental settings as in Section 4.2. Note that the UCS
performance of 37-RMUX is reported as an average of 10 trials due to the increase of the compu-
tation time. As shown in this figure, our rule-repair algorithm with D = 0.1 very slightly improves
the performance; however, compared to the impact of ¥, no significant impact of D is observed
even with the increase of the problem dimensions. This is because that D does not significantly
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Fig. 4. The summation of numerosity of rules in [!C].

change a matching probability of the rule-condition to an input. For instance, suppose 11-MUX and
a rule-condition C with {l; = 0.1,u; = 0.9},Vi = {1,2,---,11}, its matching probability can be
0.0859(= (0.9 — 0.1)'!) for randomly-sampled inputs under a uniform distribution. Then, consider
that we repair [y with the first element of input x; = 0.4, the sub-condition ¢y can be rewritten as
{li = 0.4+ D,u; = 0.9}(i = 1). Then, the matching probability of C' can be {0.0536, 0.0526, 0.0430}
for D = {0.001,0.01,0.1}, respectively. Consequently, we suppose that D cannot be an important
parameter dependent on the performance unless it is set to an enough small value.

6 Conclusion

This paper proposed a minimum rule-repair algorithm for the UCS classifier system with real-valued
inputs on classification problems. Our concept is to repair inaccurate rules with a possible minimum
reduction of the rule-generality in order to avoid the problematic cover-delete cycle. Accordingly,
we identified the following two principles to achieve this purpose; 1) to repair the rule-condition in
order to eliminate one incorrect input from a matching subspace represented by its rule-condition,
and 2) to repair either a lower value or an upper value for one dimension z;. Experimental results
confirmed the adequacy of those principles. Consequently, UCS with our rule-repair algorithm
successfully boosts the performance while preventing the increase of the population size as well as
the cover-delete cycle.
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In future work, we apply our algorithm to real-world classification tasks, where some difficulties,

e.g., missing attribute and class imbalance, can be observed. We further analyze the impact of the
hyperparameter D (the minimum distance) on non-uniformed distributions of inputs, aiming to

revi

eal its optimal setting up guide.
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Abstract— Home Health Care (HHC) is defined as visiting,
assisting, nursing and delivering medical, nonmedical and
paramedical services to patients. Transportation costs constitute
one of the largest forms of expenditure in the HHC. Decision
makers are inclined to optimize their activities in order to increase
demand for HHC. They are confronted with multiple objectives to
be optimized simultaneously as minimizing their operating costs
while maximizing the satisfaction of their patients. A majority of
the previous works consider only the deterministic models which
ignore the uncertainties and solutions obtained by these
deterministic models are usually less robust in case of any possible
changes in practical situations. In this paper, we focused our
attention on the management of workforce in Home Hemodialysis.
Therefore, we propose a new Multi-objective model for Workforce
Routing and Scheduling in Home Hemodialysis. The data of our
model are deterministic except travel, service and start times are
uncertain. Multi-objective optimization under uncertainty has
gained considerable attention in recent years due to its practical
applications in real-life. However, we apply two new Fuzzy Multi-
objective Evolutionary Algorithms (FMOEAS) recently proposed
in the literature to solve our model which are the Extended Non-
dominated Sorting Genetic Algorithm 11 (E-NSGA-II) and the
Extended Strength Pareto Evolutionary Algorithm (E-SPEAZ2).
These algorithms are applied for the first time in the field of HHC.
The obtained results show their effectiveness and suitability to our
problem.

Keywords—Home Hemodialysis, Workforce Routing and
Scheduling Problem, Multiple Salesman Travelling Problem, Multi-
Objective Optimization, Uncertainty, Fuzzy Pareto Dominance, E-
NSGAII, E-SPEA2

I.  INTRODUCTION

Workforce scheduling appear in many spheres of life like
hospitals, industry, public transportation, airlines companies,
etc. [8]. Workforce scheduling in HHC has been reported as one
of the largest single factors of financial, productivity and quality
performance. The aim of HHC company is to provide the care
(medical and paramedical services) to patients in their own
homes [46] and to accord a formal assessment of their needs.
This support is made by the staff like nurses, doctors,
maintenance technicians, carriers, etc.

Home Hemodialysis is one of the most pathologies
commonly treated in HHC. Home Hemodialysis consists in

bringing to the patient's home a blood purification machine. This
machine must be reliable. It must be regularly monitored and
maintained by a maintenance technician, because we can’t admit
a risk for the patient who is connected to the machine 7 times a
week. Every technician visit daily a number of patients located
at different places. The costs generated by the maintenance
process are very high.

The main objectives of HHC companies are the
minimization of costs and maximization of customer
satisfaction. Decision-makers have applied a lot of strategies to
optimize the objectives of HHC companies. Most real
optimization problems are described using several objectives
that must be optimized simultaneously [35]. In this paper, a
workforce scheduling and routing problem is formulated as a
multi-objective model. Our problem presents several
similarities with the well-known Multiple Travelling Salesman
Problem (mTSP).

Travelling Salesman Problem (TSP) is Known as an NP-
hard problem in combinatorial optimization, The importance of
this problem is due to the fact that it is used in many fields such
as transportation, logistics, problem of routing and many others
scientific and industrial fields [43]. Solving a TSP consists on
finding the shortest path to travel through a given number of
cities. The traveler has to travel through all the given cities
exactly once and return to the same city from where he started.
Given, the distances between each pair of cities, what route
should the salesman choose in order to minimize the total
distance traveled? Instead of distance, other notions such as
time, cost, etc., can be considered as well [43] [45].

In optimization problems, especially those arising from real
problems, the values of certain parameters may be uncertain.
This can come from a lack of information, prediction or
estimation erros or a bad analysis of some data [6]. In our model,
travel and service times are uncertain due to transport
congestion, difficulty to identify the fault, etc. The proposed
model aims to optimize two objectives: the first one consists on
minimizing the overall service times for all workers while the
second consists on minimizing the waiting time for patients. To
solve our Multi-objective mTSP model, we apply two modified
algorithms based on two well-known MOEAs which are the E-
NSGAIl and E-SPEA2. They are proposed by [9]. These
algorithms are reconfigured to deal with uncertain data in
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Multiobjective optimization. We evaluate our model with an
illustrative example of Home Hemodialysis.

This work is organized as follows: section 2 summarizes the
literature review on the workforce scheduling and routing
problems and the multi-objective optimizing solving
approaches. Section 3 presents our mathematical formulation
for the considered problem. Solutions approaches are described
in section 4. Experimental results are discussed and presented
in section 5. Section 6 concludes the work.

II. LITERATURE REVIEW

A. Workforce Scheduling and Routing Problems

Workforce  scheduling represents the assignment
of the employees to the defined shifts for a period of time [8].
In the HHC field, scheduling problem consists on designing a
set of routes for medical service suppliers to visit a number of
patients located at different places and asking for a set of
medical tasks [46]. There are many scenarios in which
personnel must carry out tasks at different locations hence
requiring transportation. Examples of these types of scenarios
include nurses visiting patients at home, technicians carrying
out repairs at customers’ locations and security guards
performing rounds at different premises, etc. We refer to these
scenarios as workforce scheduling and routing problems as they
usually involve the scheduling of personnel combined with
some form of routing in order to ensure that employees arrive
on time at the locations where tasks need to be performed [38].

Many types of personnel scheduling and routing problems in
HHC field have been tackled in the literature. [48] worked on
nurse scheduling, their objectives are to minimize the travel cost
and maximize patient satisfaction. They defined a linear model
inspired from the mTSP model but with some specific
constraints. And, they solved it using Cplex. [49] modelled the
nursing routing problem with a Mixed Integer Linear
Programming (MILP) that aims to maximize the number of
visits. [50] proposed a MILP model to optimize travel for HHC
staff. To solve their problem, the authors used Cplex solver. [51]
focused on the process of cancer products delivery, as part of a
treatment for Home Chemotherapy treatment. The drugs
delivery can be performed by the nurses or by specialized
deliverers. [52] proposed a new model of Vehicle Routing
Problem (VRP) with specific constraints for nurses and
technicians scheduling on Peritoneal Dialysis (PD). Then, they
solved the model using GAMS solver.

We propose in Table 1 a classification of same recent works
dealing with the HHC scheduling and routing problem. This
classification, is based on the following characteristics:

= Type of the resource to be planned:
Nurse (N), Technician (T), Doctor (D) and Delivery man (L)
= Optimization criteria to be optimized

-Transport, Service Time/ cost (TST): Minimize transport/
service time or cost

-Number of visits (V): Maximize the number of visits
-Number of resources (R): Minimize the number of resources

- Waiting time for patient (W): Minimize the delays due to
traffic or service times.

Table 1: Classification of works on HHC scheduling and routing
problems

Work Resource Optimization criteria

N T D L TST \Y R W

[48] X X X

[49] X X X X

[50] X X X

[51] X X X

[52] X X X X

[53] X X

[54] X X

[55] X X

[56] X X

[58] X X

Our Work X X X

Most of these papers are dealing with nurse and physician
scheduling. In our work, we focus our attention on maintenance
technicians scheduling in Home Hemodialysis. Two objectives
are proposed in this paper:

- Minimize the overall service times for all workers
- Minimize the waiting time for patients.

B. Multi-objective Optimization Problems

Multi-objective optimization (MOO) considers more than
one objective function to be optimized simultaneously. Solving
a Multi-Objective Problem (MOP) implies obtaining a set of
best solutions called Pareto optimal set [6]. The concept of
Pareto dominance is of fundamental importance to MOO, as it
allows to compare two objective vectors in a precise sense [41].
The concept of dominance is applied to multi-objective
problems to compare two solution candidates; if one of these
solution is dominated by the other one. In particular, the
dominance is a method for the classification of the solutions
which ensures the selection of the best solution .Having several
objective functions, the notion of “optimum” changes, because
in MOPs, we are really trying to find good compromises or
“trade-offs” rather than a single solution as in global
optimization. We will use the most commonly accepted term,
Pareto optimum [32]. These notions will be detailed in the
section 4.

1 https://www.gams.com/optimization-solvers/
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In recent years, MOP have received considerable attention
in the HHC field. [19] proposed two multi-objective models for
organizing routes of HHC. [48] have proposed a new multi-
objective model to optimize the degree and the level of
competence of the patient. [55] considered three objectives
which are the minimization of the total working times of all
caregivers, the maximization of the quality of service and the
minimization of the maximal working time difference among
nurses and auxiliary nurses. [56] have proposed a multi-

demand is subject to uncertainty. They proposed a
metaheuristic which able to efficiently return solutions near to
the optimal.

A wide variety of resolution methods have been proposed
in the literature to solve MOO under uncertainty. Table 3
presents some related works.

Table 3: Resolution methods for MOP under uncertainty

objective approach based on a MILP, it find an effective Work Publication Resolution Methods
feasible working plan for each resource on a daily basis, which Year
ensures the patients’ and the caregivers’ satisfaction while [20] 2019 Simulated Annealing (SA),
controlling costs and respecting patients’ preferences. [57] are Neighborhood and Tabu Search _
interested in overtime costs of the nurses and customer [ 2018 Qnyegzeﬁglzf;‘lrgtfovs;m?:géz "’\*A generic
preferences on visit and nurses. [52] 2017 worst case robust optimization
To sc_)lv_e MOP, most of the recent works have usgd 37 2017 Fuzzy Chance Constraint Programming,
metaheuristics. Table 2 presents the resolution methods used in Hybrid Genetic Algorithm
some recent works on HHC. [11] 2016 Gaussian processes and the efficient
. . global optimization EGO method
Table 2: Resolution methods for MOPs [44] 2015 Artificial Bee Colony algorithm
Work Put:l(ication Resolution Methods [16] 2015 NSGA-1I, Monte Carlo method A new
ear » ;
Exact Methods Netaheuristics framework ”based on the ”Uncertain
Pareto front”,
[55] 2019 X [10] 2005 Pareto based multi-objective evolutionary
algorithm (PMOEA)
[40] 2019 X [2] 2014 Fuzzy multi-criteria particle swarm
[60] 2019 X Optimization (FPSO)
[39] 2014 Fuzzy Simulated Evolution Algorithm
[57] 2016 X
[19] 2015 X [6] 2014 Fuzzy extension of SPEA2 and NSGAII
[49] 2015 X [26] 2002 Fuzzy Evolutionary Approach
Our work Extended NSGAII and Extended SPEA2
[56] 2015 X
[48] 2013 X
Our Work X I1l. PROBLEM DESCRIPTION

C. Multi-Objective Optimization problems under Uncertainty

MOO under uncertainty is considered one of the most
important areas of research in decision making. Most real-
world problems have multiple objectives to optimize
simultaneously and which are often contradictory. Most of the
works in the literature have focused on deterministic multi-
objective problems where the solutions are a set of exact values
[6]. The authors of [6] and [9] defined new concepts to deal
with multi-objective problems under uncertainty.

In HHC field, few papers have considered uncertainty in
their models. [20] Formulated a model for an HHC Routing and
Scheduling Problem with taking into account uncertain travel
and service times. [37] consider the HHC Routing Problem with
Fuzzy Demand, which comes from the logistics practice of the
HHC company. [59] propose uncertainty of patient demand
over a multiple day time horizon, when scheduling and routing
decisions are taken. But very few articles have proposed multi-
objective  models under uncertainty. For example, [39]
proposed a multi-objective model under uncertainty in which,
they have optimize the assignment of patients to each worker
and choose the best route for all workers in order to perform
their tasks. [59] have studied the HHC problem with patient

In this section, we deal with the problem of workforce
routing and scheduling in home hemodialysis treatment. For
each HHC company, there are a number of workers available
each day that should be scheduled. Each worker has a
maximum workload (for example: 5 working hours, from 8:00
amto 1:00 pm). Every day, a set of patients is chosen in advance
according to the daily capacities of the workers and the
distances to be covered. We propose a new multi-objective
model based on mTSP that aims to minimize the overall service
times for all workers and minimize the waiting time for
patients. A patient can only be assigned to one technician and
one at a time. Travel, service and start times are uncertain data.
The rest of the data are deterministic.

A. Notation

W : Set of Workers, w = 1.. W

P : Set of Nodes, i = 0..P, {0} represents the HHC Company
and{1..P} represents patients

S,w - Working time performed by Worker w at Patienti,Vi €
P

C,, : Maximum workload of each Worker w,v w € W

e; . Earliest start time of service at Patienti,vVi € P

l; - Lastest start time of Service at Patienti,vVi € P
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7‘; : Travel time between the leading Patient i and the following
Patient j, if they assigned to the same Worker w,v i,j € P, i #
L,Yw ew

A : Number of patients to be visited by each worker, 4 = =1
B : Number of paths to be visited by each worker, B = A — 1

B. Decision Variables

1 if patient p is assigned to the Worker w,
VpeEPVYwWEW

Xiw =
0 Otherwise
1 if patients i and j are assigned to the same
Workerw,Vi,j EP,i#j,VWEW
YL‘jW:

1 Otherwise

D, : The start time of service performed by Worker w at the
patienti,vp e P,Yw €W

C. Mathematical Formulation:

Minimize Zl = Zi,jEP ZweW(Tl; +§;/ )'Yijw (l)
Minimize Z, = ZjEPZWEW D‘]\\;/ Xjw (2
Subject to
Ywew Xow =W (3)
ZWEWXiW:1’ViEP (4)
Yier\(0} Xiw =4 ,VWEW 5)
ZjEP\{O} ZWEW Yojw =W (6)
ZieP\{O] ZWEW YiOW =W (7)
Yijer\io} Yijw =B ,YweW )
ZWEW Yijw =1 v i'j € P\{O} (9)
Yijerizj (T +Suw )-Yiyw < Gy , YW EW (10)
Yjer Yiiw — Yyjw =0,VieP, weW (11)
Dy =D +T,+Sw) Yiju VijeP, weW (12)
e, <D, <lVi EPYWEW (13)
X, €{0,1},Vi eP,VW €W (14)
Yijwe{0,1},Vi,j EP,i#jVw €W (15)
D,, =0,Vi EP,YW EW (16)
The first objective function aims to minimize

the overall service times for all workers, which includes travel
times and working times. The second objective function
attempts to minimize the overall start times for all workers,
which tends to minimize the waiting time for all patients.
Constraint (3) guarantee that all workers go through the HHC
company. Constraint (4) ensure that each patient is assigned to

only one worker. Constraint (5) forces each worker to be
assigned to a fixed number of patients. Constraint (6) and
Constraint (7) guarantee that all workers start and end their
works in HHC Company. Constraint (8) forces each worker to
visit a fixed number of paths. Constraint (9) ensure that each
worker cross a path exactly once. Constraint (10) guarantee that
the working time of each worker does not exceed its maximum
workload. Constraint (11) allows us to avoid the sub-tours.
Constraint (12) calculates the start service time at the following
patient if two patients are assigned to the same worker.
Constraint (13) forces the worker to arrive at the patient in a
determined timing (from the earliest start time and does not
exceed the latest start time). Constraint (14) and Constraint (15)
indicate that decision variables X;, and Y;;, are binary.
Constraint (16) indicates that the start time D,, must be
positive.

IV. SOLUTION APPROACH

In this work, we aim to find a solution on which we can agree
that is optimal in some sense. To do this, it can be interesting to
approximate a set of interesting solutions. This strategy implies
to avoid so-called Pareto dominated solutions.

A. Pareto dominance

The concept of Pareto dominance is of fundamental
importance to MOO, as it allows to compare two objective
vectors in a precise sense. It can improve in one objective
without deteriorating the performance in any other objective
[27].

MOO can be solved using conventional technique and
Evolutionary based technique. [43]

- Conventional technique:

= Weighted Sum Technique: this technique
converts multiple objectives into single
objective using linear combination of
objectives

= Constraint Based Technique: this technique
considers only one objective at a time and
treats remaining k-1 objectives as
constraints.

- Evolutionary based technique: are well suited for
solving several complex multi-objective problems
with more objectives. They generates a Pareto set at
the end of each run.

B. Multi-objective Evolutionary Algorithms (MOEAs):

To solve our MOO model, we choose MOEAs for the several
raisons:

- They have the ability to search partially ordered spaces
for several alternative trade-offs. They find a wide
range of non-dominated solutions close to the true
pareto-optimal solutions [36].
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- They have proved to be powerful and suitable for
MOO because of their population-based search and
ability to find multiple optimal solutions with a good
spread.[9]

The Pareto optimality approach is employed to identify a set
of pareto optimal solutions in order to obtain the best trade-offs
between different objectives [16]. The most popular MOEAs
are:

= Elitist non-dominated sorting Genetic Algorithm
(NSGAII): According to [41], this algorithm consists
of the following steps:

- Finds the non-dominated solutions in the population
and marks these points as the first front.

- Calculates the average distance between members of
each front on the front itself. Parents are selected from
the population by using binary tournament selection
based on the rank and crowding distance.

- Anindividual is selected if the rank is smaller than the
others or if crowding distance is greater than the
others.

- Crowding distance is compared only if ranks for both
individuals are the same.

- The selected population generates the offspring from
the crossover and mutation operators.

- The selection is based on the rank and on the crowding
distance on the last front.

= Strength Pareto Evolutionary Algorithm (SPEA2)
[41]:

- The non-dominated set is separated from the
population of candidate solutions.

- Takes into account the number of dominating and
dominated solutions in computing the raw fitness of a
solution.

- Locate and maintain a front of non-dominated
solutions. This is achieved by using evolutionary
process to explore the search space.

- A selection process uses a combination of the degree
to which a candidate solution is dominated

Table 4: Comparison between NSGAIl & SPEA2

NSGAII SPEA2
Fitness Pareto dominance Pareto dominance
Diversity Crowding-distance Nearest neighbor
Selection Binary tournament Binary tournament

Replacement

Elitist

Generational

Stopping

nb of generations

nb of generations

C. Fuzzy MultiObjective Optimization

Real-world problems are usually affected by uncertainties
that should be taken into account in the optimization and which
are described by perturbations on decision variables or on
parameters [22]. In this context, recent works suggested
methods that determine the most robust solutions. The
randomness and the fuzziness have been studied in the MOP
models and have been applied with random or fuzzy parameters
[4]. We focus our attention on fuzzy numbers [1]. They offer a
natural way for expressing uncertain values [12]. In this paper,
the fuzzy data are represented by triangular fuzzy numbers [1]

(31 [7].

The Triangular Fuzzy Number (TFN) is used to represent
uncertain information. The authors in [6], [9] and [12] have
defined a triangular fuzzy number (A) as equation (17). The
TFN is defined as a normal fuzzy set which is represented with
atriplet [a,ad,a], where [a,a], is the interval of possible
values and @ denotes its kernel value. Each element x in A has
a value within [0,1] which was affected by a Membership
Function g, (x) .

1, x=4a

%, as<x<a
mGo={ax L. _g (17)

k(l)l ’ Otherwise

In our case, the input date and the objective functions will
be defined by this fuzzy form, as follows:

Zy = [21:7;'2_1]
7 = - (18)
Zy = [ﬁ:zz:zz]

The classical multi-objective methods cannot be applied to
solve our multi-objective model with triangular-valued
functions. Therefore, we apply two new algorithms proposed
by [9]. These algorithms will be describe in the next sub-
section.

D. Fuzzy Multi-Objective Evolutionary Algorithm for mTSP
(FMOEAMTSP) :

In order to solve our model, we apply two new algorithms
from the literature which are proposed by [9]. In this paper,
we are the first who apply the E-NSGAII and the E-SPEA2
to the mTSP model and in the HHC area. The structure of
these two algorithms is presented in Fig.l. The main
contribution of these algorithms consists on replacing the
standard Pareto by the fuzzy Pareto dominance.
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Initialization
Population: set of triangular fuzzy
solutions

1

Evaluation
Fitness: dominance-based evaluation

Selection
Fuzzy non-dominated solutions

Reproduction
Crossover, Mutation

Replacement

Figure 1: Structure of the E-NSGA-II & E-SPEA

We follow the same steps of E-NSGA which are detailed in
Algorithm.1:

Algorithm E-NSGAII
Input : Population size N
Maximum number of generations (¢

Output: Pareto set approximation
begin
1.Initialization. create a random population P of N fuzzy solutions;
repeat
2. Fitness Assignment. rank all solutions using fuzzy Pareto dominance;
3. Environmental Selection. select the non-dominated fuzzy solutions
based on their expected crowding values and copy them in an external
population P';
if size of P' exceeds N then
| add the least crowded solutions to P';
else if size of P' is less than N then
| set P’ with dominated solutions;
else
| the environmental selection is completed
end
4.Elitism. update PU P!

until 5. Stopping condition. Number of generations > G is safisfied

6. Mating Selection. perform a binary crowded tournament selection to select
parents from P';

7.Variation. apply erossover and mutation operators to the mating pool;

8 Replacement. replace old population by the resulting offspring population.

end

Algorithm 1: E-NSGAII [9]

We consider also the same parameters defined by E-SPEAZ2 that
is described in Algorithm 2.

Algorithm 2: E-SPEA2
Input : Population size N

Triangular archive A
Maximum number of generations ¢
Qutput: Parefo set approximation
begin
1.Initialization. create a random population P of N fuzzy solutions and
create an empty triangular archive A of fixed size M;
repeat
2.Fitness Assignment. rank solutions using fuzzy Paveto dominance;
3. Environmental Selection. copy all non-dominated solutions from P to
the triangular archive 4:
if size of A ezceeds M then
| Ais pruned by means of a clustering procedure;
else if size of A 18 less than M then
| Al A with best dominated solutions;
else
| the environmental selection is completed;
end
4.Elitism. update A;
until 5. Stopping condition. Number of generations > G is satisfied;
6.Mating Selection. perform a binary towrnament selection with replacement

on A to fill the mating pool;
T.Variation. apply crossover and mutation operators to the mating pool
8. Replacement, replace old population by the resulting offspring population,

end

Algorithm 2: E-SPEA2 [9]

V. EXPERIMENTATIONS

In this section, we simulate our model with an example of
the workforce Scheduling and Routing in Home Hemodialysis.
We focus our attention on maintenance process for dialysis
machines which represents one of the expense factors for the
HHC Company. We implement for the first time the E-NSGAII
and the E-SPEA2 in Java language using the Integrated
Development Environment Apache NetBeans IDE?, version
8.2. It provides robust editors that display support for the latest
Java technologies. We integrated the JMETALS framework that
stands for Metaheuristic Algorithms in Java. These algorithms
are executed on a 2.50-GHz Intel(R) Core(TM) i5-7200 CPU
computer with 8 GB of RAM and running under Windows 10.

In our case, there is no common benchmark available in
the literature for stochastic mTSPs, we are basing on a close-up
example of reality inspired by data provided by the
Biomedicine Agency “in the kidney annual report for 20175 as
shown in Table 5. We consider the following example to
validate our proposed model:

2 NetBeans IDE : https://netbeans.org/
8 JMETAL : http://jmetal.sourceforge.net/
4 https://www.agence-biomedecine.fr/

5 https://www.francerein.org/files/France%20Rein/mediatheque/rapport-rein-2017.pdf
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Table 5: Biomedicine Agency data

Patients on Dialysis in France 47985 patients

Patients on Hemodialysis in France 44,978 patients
(93.7%)

Patients on HHC in region Haut-de-France 4929 patients

Patients on Hemodialysis HHC in region Haut- | 40 patients (0.8%)

de France

We take the example of a home hemodialysis company that is
located in the region of “Haut-de-France”, France and which
has 40 patients and 2 maintenance technicians. Each technician
must visit a specific set of patients and each patient must be
visited only once a day. These technicians must start their work
at 8:00 am from HHC Company and return there at the end of
their services. The data used for the test are presented in table
6. HHC is represented by node 0.

Table 6: Configuration table

Table 7: Approximate Travel Times (min)

il |0 1 2 3 4 5 6 7 8 9 |10
0 0 40| 40 40| 40 40 40 40 40| 40| 40
1 | 40 0| 95| 120| 65 30| 105 35 20| 80| 50
2 | 40 95| O 105| 50 20 95 20 30| 65| 35
3 | 40 30| 65 0f 35 35 80 30 20| 50| 20
4 | 40 20| 50 80| O 50 65 20 35| 35| 30
5 | 40 35| 20 65| 30 0 50 35 50| 20| 35
6 | 40 50| 20 50| 20 80 0 50 65| 30| 20
7 | 40 65| 30 35| 20 95 20 0 80| 20| 50
g | 40 80| 20 20| 50 20 30 80 0| 35| 65
9 | 40 95| 35 30| 65| 120 20 95| 105 O} 20
10 | 40| 105| 50 20| 80| 135 35| 105( 120| 65| O

We present in table 8 the parameters of E-NSGA-II and E-
SPEA2.

Each maintenance technician visits a specific number of
patients. In our case, we have 40 patients and 2 technicians. We
consider that these technicians travel to patients over a 4-day
horizon. We balance the number of patients to be visited by all
technicians between the days on the horizon: Total number of
patients / number of days on the horizon. Table 7 shows the
approximate travel times between the different nodes.

As we know, that travel times cannot be known in advance
given several constraints such as traffic on roads, accidents,
strikes, weather and many other factors that can delay or even
advance the start time of service. For these reasons, we have
defined that travel times are uncertain data. We cannot predict
the working time for certain causes (an unexpected breakdown
in the machine, the technician delayed to finish the repair, etc.).
Our data are defined as Triangular Fuzzy Number:

~

y=[7y. 70T

- SiW=|iSli'SLW'$

The start time of service performed by a technician is calculated
as follows:

© D= DV VS (19
- D]AW = D/O\w \ TL; \ 5{1;/ (20)
- D] = DOW \% TL] \% Siw (21)

Parameter Value

Number of Technicians wW=2 Table 8: Algorithm parameters

Number of Patients P \{0} = 40

Start time from HHC Company 8:00 am Algorithm Population Generation Crossover Mutation%
maximum workload C,, 5 Hours = 300 minutes size size %

Number of patients assigned to each patient 5 patients E-NSGA-II | 10 10 60 10

Number of paths assigned to each patient 4 paths E-SPEA2 10 10 25 10
Approximate working time 20 minutes

Z‘ gzz T 55"73; In order to generate new solutions, called offspring, we code

individuals with decimal coding. The chromosome
representation is showed by Fig.2. We remember that each
route must start and finish in the HHC company. Our
chromosome presents only the patients without HHC company.

Chromosome
4 1
9 7
g 10
% 6
: :

Figure2: Chromosome representation

After simulation, we obtain the results which are presented
in Table 9, Table 10 Fig.3 and Fig.4.
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Table 9: Obtained results by E-NSGA-II

# Route Travel Working 7 7
times | times 1 2

1 | 0>3>8->5> | [135,160 | [75,100, [420,52 | [910,960,1
210 ,165] 125] 0,620] 010]
0>4>7>6-> | [135,160 | [75,100,
10>9->0 ,185] 125]

2 | 0>1>4>6> | [190,215 | [75,100, [535,63 | [1465,1515
9->10->0 ,240] 125] 5,735] ,1565]
0>8>2>5> | [195,220 | [75,100,

32720 ,245] 125]

3 | 0212>4->6~> | [190,215 | [75,100, [485,58 | [1270,1320
9->10->0 ,240] 125] 5,685] ,1370]
0>5>2>7-> | [145,170 | [75,100,
32>8->0 ,195] 125]

4 0->10>3->8 | [220,245 | [75,100, [505,60 | [1235,1285
222120 ,270] 125] 5,705] ,1335]
0>6>4>7-> | [135,160 | [75,100,
9->5->0 ,165] 125]

5 0>3->10>6 | [145,170 | [75,100, [575,67 | [1485,1535
29->5>0 ,195] 125] 5,775] ,1585]
0>4>1->2-> | [280,305 | [75,100,
7>8->0 ,330] 125]

6 0>2->7->10 | [145,170 | [75,100, [505,60 | [1570,1620
5180 ,195] 125] 5,705] ,1670]
0>5>3->9> | [210,235 | [75,100,
6->4->0 ,260] 125]

7 | 0>72>2>1> | [250,375 | [75,100, [698,79 | [1948,1998
6240 ,400] 125] 8,898] ,2048]
0>4->5>3-> | [298,323 | [75,100,
9->8->0 ,348] 125]

8 0->10->9>8 | [280,305 | [75,100, [645,74 | [1920,1970
272620 ,330] 125] 5,845] ,2020]
0>1->2->3> | [215,240 | [75,100,

450 ,265] 125]

9 0>2->10>6 | [195,220 | [75,100, [560,66 | [1520,1570
25210 ,245] 125] 0,760] ,1620]
0>3>9>4-> | [255,280 | [75,100,
8->7>0 ,305] 125]

10 | 0>7>1->2> | [355,380 | [75,100, [765,86 | [2010,2060
3240 ,405] 125] 5,965] ,2110]
0->8->6>10 | [260,285 | [75,100,

25290 ,310] 125]

According to table 9 and Fig.3, the solutions are represented
by three values. The best solutions are those which have the
best trade-offs between objectives functions values. In our case,
the first solution is the best one because it is non-dominated by
any other solution and it has the best trade-off between
objetive functions values.
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Figure 3: Representation of solutions in the objective space

The obtained results by the algorithm E-SPEA2 are showed in

table 10 and Fig.4.

Table 10: Obtained results by E-SPEA2

# Route

Travel

Working 7 7
times | times 1 2

1 0>32>8->5> [135,160 [75,100, [420,52 [910,960,1
25150 165] 125] 0,620] 010]
024>7>6> [135,160 [75,100,

105950 185] 125]

2 02>7>32>5> [195,220 [75,100, [535,63 [1465,1515
2580 245] 125] 5,735] 1565]
05105956 | [190,215 | [75,100,
>4>150 240] 125]

3 02>1>4->6> [190,215 [75,100, [485,58 [1270,1320
951050 240] 125] 5,685] 1370]
0>5>2>7> | [145,170 | [75,100,

3580 195] 125]

4 [ 05951056 | [135160 | [75.100, | [420,52 | [910,960.1
37540 165] 125] | 0,620] 010]
02>1>2>5> [135,160 [75,100,

830 185] 125]

5 02>1>2->3> [215,240 [75,100, [645,74 [1920,1970
45550 265] 125] 5,845 2020]
02>6>72>8~> [280,305 [75,100,
9->10->0 ,330] 125]

6 0>8->1->10 [145,170 [75,100, [505,60 [1570,1620
575250 195] 125] 5,705] 1670]
0>5>32>9-> | [210,235 [75,100,

640 260] 125]

7 [ 05105958 | [280,305 | [75,100, | [645,74 | [1920,1970
57560 330] 125] 5,845] 2020]
02>1>2-2>3> [215,240 [75,100,

45550 265] 125]

8 0->10>3->8 [220,245 [75,100, [505,60 [1235,1285
525150 270] 125] 5,705] 1335]
02>6>4>7> [135,160 [75,100,

9550 165] 125]

9 02>5>4->3> [215,240 [75,100, [645,74 [1920,1970
25150 265] 125] 5,845] 2020]
0>6>7>8> | [280,305 | [75,100,
9>10->0 330] 125]

10 | 05351056 | [145,170 | [75100, | [575.67 | [1485,1535
59550 195] 125] 5,775] 1585]
0>4->1->2> [280,305 [75,100,

7580 330] 125]




According to table 10 and Fig.9, we interpret that there are
two non-dominated solutions which have the same fitness
value. These routes have the same trade-offs between the first
and the second objective functions. Therefore, decision-makers
can choose one of these solutions (solution 1 or solution 4).

2100 0} 0 0

1900

1700

Z2
e
3
|
‘
4
e
|
|
|
Ed
-

1500
1300 * T

1100

900 — ! 0

Figure 4: solutions’ representations in the objective space

We compare between obtained results by E-NSGA-II and E-
SPEAZ2 in table 11.

Table 11: Comparison of results

Algorithm # pareto- | Solution Z Z,
optimal
solution
E-NSGA-II 1 0>3>8->5 [420,520,62 | [910,960,10
2>2->1->0 0] 10]
0>4>7->6
2102920
E-SPEA2 2 0>3>8->5 [420,520,62 | [910,960,10
222120 0] 10]
0>4>7->6
210>9->0
0->9->10->6 [420,520,62 | [910,960,10
27240 0] 10]
02>1->2->5
2>8->3->0

We observe that the performance of algorithms are similar.
E SPEA2 has usually better convergence to the global Pareto
front than E-NSGAII but E-NSGAII is the fastest algorithm
because it doesn’t involve expensive calculations or archive
procedure as in E-SPEA2.

VI. CONCLUSION

Home Hemodialysis companies aims to minimize costs and
maximize customers’ satisfaction. We focused our attention on
the maintenance process which represents one of the expense
factors for the HHC Company. Therefore, we have proposed a
new multi-objective model for the workforce routing and
scheduling problem, extended of mTSP. The data of our model
are deterministic except travel, service and start times are
uncertain. Our model aims to minimize the overall service times

for all technicians and minimize the delays due to the traffic and
service times which directly influences to the patients’
satisfaction. To solve our MOP under uncertainties, we choose
to apply two extended algorithms from literature, proposed by
[9]. E-NSGAII and E-SPEA2 have been modified in order to
adapt them to the MOP containing uncertain data. These two
algorithms are applied for the first time to mTSP models and
the HHC area. The obtained results have shown the
effectiveness of the E-NSGA-II and the E-SPEA2 and their
suitability for our problem.

In future works, we intend to extend our model in many ways:

- Asinthe literature there is no collective benchmark to
test stochastic data for mTSP, we plan to design a
benchmark with more instances.

- Simulate our model with new approaches basing on
other types of HHC workforces such the drug
deliverers.

- Add new constraints to our model such as the vehicle
capacity constraint. In this case, we must adapt our
problem to VRP models.
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Abstract. Designing a heuristic algorithm to solve an optimization problem can also be seen
as an optimization problem. Such a problem seeks to determine the best algorithm contained
in the search space. The objective function corresponds to the computational performance of
the algorithm measured in terms of computational time, complexity, number of instructions
or number of elementary operations. The automatic design of algorithms has been explored
for several combinatorial optimization problems. In this work, we extend this exploration
towards the automatic design of metaheuristics to find solutions for the traveling salesman
problem. The process is carried out by genetic programming. The resulting algorithms are
combinations of well-known metaheuristics and, in some cases, present better computational
performance than the existing algorithms for the set of selected test instances.

1 Introduction

There is a family of optimization problems that come from various fields of knowledge and are
characterized by the tremendous computational difficulty that arises when trying to determine an
optimal solution. Such optimization problems, which we call complex problems here, are considered
difficult because currently, an algorithm that can solve all the instances of a problem with compu-
tational efficiency is not known [1, 2]. In this field, it is accepted that an algorithm is efficient when
it requires many steps that grow polynomially with the input. A typical method for addressing
complex optimization problems is through mathematical programming, which considers an objec-
tive function that corresponds to the criteria to be optimized and a set of constraints that define
the solution space that contains the optimal solution. Integer programming algorithms utilize the
enumeration of the solution space, a task that may require very high computational time or mem-
ory even when dealing with small examples of the problem [3,4]. This challenge constitutes one of
the main fields of scientific research in the area of combinatorial optimization, and it is a relentless
search to improve existing techniques or to find new methods for addressing this situation. The
motivation behind this search consists of innumerable practical situations that occur in various
areas of knowledge, such as transport [5], health care [6], sports [7], production processes [§], and
logistics [9].

One of the most commonly used practical approaches for addressing the family of complex
optimization problems considers metaheuristics. A metaheuristic is a method that describes a
general procedure to effectively inspect the solution space of an optimization problem and thus
determine the best solution inspected [10]. In recent decades, this field has increased considerably
because numerous metaheuristics have been generated, and a wide variety of problems have been
studied under this approach [11]. Although a metaheuristic does not guarantee the determination
of the optimal solution, in practice, they are very effective because they require a low computational
time and provide a solution close to the optimal, and in many instances, they return the optimal
solution. Such techniques have originated analogizing with different phenomena in nature, such as
the species evolution, particle swarms, bee and ant colonies, and pure substance cooling. In general,
they can be classified into single-solution search, population-based search, or hybrid metaheuristics
[10]. Although their origins are varied, some characteristics are shared by several metaheuristics:
a) they carry out the search process by gradually visiting solutions that belong to the problem-
space, b) they work on a current solution or a current set of solutions in every step, ¢) the problem
optimization function inherently guides the search process, d) they use exploration and exploitation
strategies and e) they partially store the search space.

Recent literature has shown the emergence of a wide variety of hybrid metaheuristics that
have better computational performance than the same metaheuristics used individually [12-16].
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Such hybrid algorithms arise when considering the best components of metaheuristics and assem-
bling them appropriately for the optimization problem at hand. The variety of works considers
hybridizations of metaheuristics, with other metaheuristics, constraint programming, search tree
techniques, and mathematical programming. However, the main deficiency that arises in this field
is the design step because it is difficult to know in advance the appropriate combination for each
optimization problem. It is necessary to identify how many and what components can be inte-
grated to generate the hybrid algorithm that responds with good computational performance for
the specific optimization problem. A framework or practical guide that facilitates the design task
is not known in the literature. In practice, the authors have found the appropriate combination of
components through computational experiments that manually test some possibilities among the
many possible combinations. Nor is there a standard method for carrying out experimentation,
and although today there is a technological advance that allows a large number of numerical tests,
to the best of our knowledge, the automation of this process has not been explored.

Another approach used to address complex optimization problems is the automatic generation of
an algorithm (AGA). The AGA automatically assembles the components that potentially compose
an algorithm for a given optimization problem [17-19]. This task is possible because determining the
best algorithm for an optimization problem is also a master optimization problem. Consequently,
the search for the best algorithm for a given problem reduces to solving the master problem by some
of the existing methods, which in practice can be any of the current metaheuristics. The elementary
components that can be considered are diverse; they can be specific heuristics already existing for
the problem, the atomic parts of such heuristics, or exact algorithms of mathematical programming.
Genetic programming (GP) is particularly appropriate for this task because it artificially evolves
populations of syntactic trees that represent combinations of instructions, such as those that occur
in an algorithm [20]. In this way, several algorithmic combinations can be represented with syntax
trees and combined by evolutionary computing. This technique has allowed the generation of
new algorithms for combinatorial optimization problems [21-24], a fact that suggests that the
same technique could automatically produce hybrid metaheuristics. AGA is not only an automatic
method for combining thousands of components and exploring the space composed of all hybrid
metaheuristics but also determining the appropriate algorithm for each optimization problem, thus
providing an experimental standard for this field of knowledge.

In this work, we use AGA to generate single-solution hybrid metaheuristic algorithms for the
traveling salesman problem (TSP). The algorithms are constructed through GP by evolving syntac-
tic trees [17]. The components of syntactic trees are functions and terminals, which are instructions
typically used to write pseudocode and primary components typically considered in the heuristic,
metaheuristic and exact methods. In addition, a set of instances is selected and divided into two
groups: the first group is used for the construction of metaheuristics, and the second group is used
to evaluate the already constructed hybrid metaheuristics.

In the following section, the literature review is presented. The procedures for generating the
metaheuristic algorithms are described in the third section. The computational results of the gen-
erated algorithms are presented in the fourth section. The conclusions of the study are presented
in the last section.

2 Literature review

Only recently have the first attempts to automatize the design of hybrid metaheuristics appeared.
One of them is the novel approach by [25] that proposes a meta-GA to automate the hybridiza-
tion of metaheuristics. The authors consider the following algorithms: simulated annealing, tabu
search, iterated local search and memetic algorithm to solve the TSP. Additionally, [25,14] effi-
ciently solved the aircraft landing problem and the two-dimensional bin packing problem using
the same approach. Their automated designed hybrid metaheuristics showed better performance
than individually used metaheuristics and manually created hybrid metaheuristics. Recently, [32]
propose a work that uses fuzzy logic and fuzzy systems to create a cooperative scheme for the
automatic selection of proper metaheuristic algorithms and control searching process dynamically.
Their approach was tested on 0-1 knapsack problem, and the computational experiments showed
to be much more effective in searching the solution space. Although, it did not differ from the
other algorithms in terms of computing times. However, since these were the first attempts to
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automatize the process in the literature, some drawbacks have been observed. Such as depending
on predefined templates (structures), only selection automatically of sequences of metaheuristics
to use, and the resulting algorithms with their analysis are not shown. The first implies that sev-
eral successful combinations within the search space may not be visited due to fixed structures.
The second means that new automatically generated algorithms are only sequences of metaheuris-
tics that are run one after another. Therefore, there is no hybridization among components of a
metaheuristic with another metaheuristic completely different. The third means that these new
automatically generated algorithms are not available to the scientific community in the field.

From the research line of automatic algorithm configuration [26], attempts are also being made
to generate hybrid metaheuristics using tools that are typically used in this area, such as IRACE
[27]. Thus, in [28], instead of seeking parameters, they sought metaheuristic components and tuned
the parameters, all in a single process. The authors used a predefined framework, with grammars for
each metaheuristic to generate hybrid metaheuristics for three combinatorial optimization prob-
lems. Other similar approaches were previously carried out by [29], who used tools to design
stochastic local searches automatically and non-hybrid metaheuristics as ACO algorithms [30].
Alfaro-Ferndndez et al. [31] generated hybrid metaheuristics following the previous methodology
described for solving hybrid flowshop scheduling problems. Their algorithms are competitive against
state-of-the-art algorithms. Recently, Pagnozzi and Stiitzle [33-35] proposed an automatic design
system of stochastic local search for permutation flowshop problem and other two variants that
consider additional constraints. This uses a configuration tool to combine algorithmic components
following a set of rules defined as a context-free grammar. Their experiments show that the gener-
ated algorithms outperform the state-of-the-art. However, these approaches from the configuration
of algorithm parameters have some limitations, such as the use of predefined templates and gram-
mars that limit the search space. The authors did not use a specific search method for the new task
of searching for potential new combinations, but instead, they used IRACE, which is a specialized
method for tuning parameters; thus, they possibly failed to explore possible good combinations.
Besides, some approaches are limited to only some metaheuristics, missing the opportunity to mix,
for instance, metaheuristics based on a population of solutions with other single-solution-based.
The same authors noted that these first approaches correspond to proofs-of-concept [28]. Therefore,
there many options for investigating approaches to improve or create new and more appropriate
approaches.

3 Procedure to generate metaheuristic

To find a solution for the metaproblem, a set of primary components must be created. These
components are designed by means of a set of functions and terminals and give rise to the new
algorithms to be produced so they must be typical components of algorithms (functions) as well as
tools that allow the construction of a solution for the optimization problem (terminals). From the
definition of these elementary components, an initial population of syntax trees can be configured
that can evolve into a sequence of later populations using reproduction, crossover, and mutation,
which are typical operators in evolutionary computing [36]. The initial population is generated by
the ramped half and half mechanism consisting of randomly generating half the population with
full trees up to a default depth and the other half, with partially full trees [37]. The fittest syntax
trees are randomly selected and reproduced into the new population. Furthermore, two types of
mutations are considered: “point mutation” and “shrink mutation”. In the first mutation, a syntax
tree node is changed by a function that uses the same number of parameters, while in the second,
a node is changed by any of the functions that act directly on the container where the current
solutions are stored. The crossover between two syntax trees is performed by replacing a node of
the first syntax tree by a section of the second. The fitness evaluation requires a set of adaptation
instances that must be adequately selected. In our case, due to the generated algorithms’ stochastic
nature, every instance is evaluated several times. The syntax trees finally produced are decoded
as algorithms and must also be evaluated externally so that a second set of control instances
is required. The set of examples of each type is divided into two groups: the first is used to
automatically construct metaheuristics, and the second is used to evaluate the algorithms already
built. This evolutionary process is described for ¢ generations in Fig. 1.

The set of functions contains the basic instructions present in any algorithm. They are defined
by means of the parameters P; and P, which are boolean variables, so a “true” indicates that
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the parameter performed an action; otherwise, it is “false”. Specifically, the main functions are
While(Py, P), which runs the parameter P, whereas P; returns “true”, And(P;, P) runs the
parameter P; and P, returning “true” if both returned values are also “true”; and If Then(P;, P»)
activates P, when running P; returns “true”.

The set of terminals is divided into two groups. The terminals are based on metaheuristics
and terminals that construct a TSP solution. The first terminals contain components of three
well-known metaheuristic algorithms: iterated local search (ILS), simulated annealing (SA) and
variable neighborhood search (VNS) [10]. These metaheuristics are decomposed in atomic parts,
and 12 terminals are obtained, such as terminals based on the computation of the temperature of
SA, acceptance criteria of an ILS or SA, and operations in the neighborhood of VNS.

The following terminals designed for the TSP are based on typical heuristics for the problem
and elementary operations to be executed on a solution container:

ShiftCity: randomly shifts a city of the current solution.

— SwapCities: randomly exchanges two cities of the current solution.

BlockReverse: randomly reverses the order of the cities of the current solution.

— BlockRule: iteratively reverses randomly the order of the cities of the current solution.
SwapCitiesRule: iteratively exchanges randomly two cities of the current solution.

— 2-Opt: is an adaptation of a local search procedure for this problem known as 2-opt.

Terminals return true if the action for which they are intended is executed and, false otherwise.
The quality of an algorithm is measured by means of the relative error in the objective function
for a set of instances used during the evolution. In addition, we consider another measure which
is the number of obtained solutions that happen to be optimal (also named hits). Let n; be the
number of instances, z; the value of the optimal solution of the instance 7, and u; the obtained value
of the algorithm for instance 7. @ and 3 are values that belong to the interval [0, 1] and are used
to arbitrarily handle the weight of each term. Furthermore, let hit; be equal to 1 if the optimal
solution is found. Then, the evaluation function is represented in Equation (1). The minimum
value of this function is zero, which means that by seeking its minimization, algorithms that solve
problem instances and have a large number of hits are explored, where « = 0.9 and g = 0.1.

featy lial g din 1)

ny “— Zi ny
=1

The evolutionary process is implemented in the ECJ 25, which is an evolutionary computation
library coded in Java [38]. The computational experiment is performed on a Google Virtual Machine
instance with 2.0 GHz (8 virtual processors, Intel Skylake) and 7.0 GB of RAM. Genetic parameters
involved in the GP are population size, 100; number of generations, 30; probabilities: crossover,
0.85; mutation: 0.10; reproduction: 0.05, and the parameter k = 15. The comparison (called testing)
of the best-obtained algorithm is performed with 14 TSPLIB instances [39], with up to 101 cities,
and in the evolution phase we use three TSPLIB instances, with up to 58 cities.
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4 Results

The best algorithm found finds near-optimal solutions for the 14 evaluation instances. The algo-
rithm was obtained after performing three runs with the same parameter values, changing only the
seed. Consequently, 3,000 combinations were inspected. In turn, to evaluate the algorithm, ten runs
were performed with each instance, and the resulting values are presented in Table 1. The name
of the instance is described in the first column, the second column contains the minimum relative
error value with respect to the optimal solution, while in the third column, and the average relative
error of all runs is presented. In the last column, the average computational time of the algorithm
with each instance is reported. In the second column, it is observed that in ten instances, the
optimal solution was obtained in at least one of the ten runs. In the ten runs, the optimal solution
of the brazil58 instance was obtained. Note that the average computational time was between 0.47
and 3.3 seconds. This result suggests that it is feasible to combine different elementary components
of the various metaheuristics and assemble such components appropriately to face the TSP.

Table 1. Performance of generated metaheuristic on 14 instances.

Instances Min (%) Avg (%) Avg time (Sec)

eil51 0.23 1.03 0.47
berlin52 0.00 3.48 0.50
brazil58 0.00 0.00 0.69
st70 0.00 1.10 1.21
€il76 0.00 1.21 1.53
pr76 0.00 0.37 1.48
rat99 0.00 1.73 3.44
kroA100  0.00 0.43 3.42
kroB100  0.00 1.01 3.78
kroC100  0.00 0.44 3.30
kroD100  0.07 1.24 3.34
kroE100 0.00 0.50 3.45
rd100 0.85 1.75 3.32
eil101 0.32 1.21 3.55
average 0.11 1.11 2.39

The structure of the generated algorithm corresponds to a variant of the ILS algorithm. Algo-
rithm 1 has four stages. In the first stage (lines 10-15), the algorithm performs a local search, and
in the second stage, it verifies the acceptance or rejection of the solution found by a local search
process (lines 16-21). In the third stage, a perturbation is performed (line 22), and in the fourth
stage, the algorithm ends with a new local search (line 24-26). The algorithm considers two stop
criteria explicitly established in lines 27 and 29. Line 27 establishes that if the first local search does
not improve the current solution, the algorithm stops. Line 29 stops the algorithm according to
the number of iterations predefined as the instance size. The generated metaheuristic differs from
ILS in the order of the instructions. There is also noise in the structure because it incorporates
elements of SA that do not contribute to the TSP solution; these are instructions that work as
bloating code that may arise when using GP.

The extension of AGA to automatically produce metaheuristics produced similar results to
those found when AGA was used to produce specific heuristics for various optimization problems.
New metaheuristics were produced, which are combinations of the initially defined components
of well-known metaheuristics. In addition, such metaheuristics produce near-optimal solutions for
at least a small group of examples. It is clear that the scalability of this result requires more
extensive experimentation. Likewise, the generated algorithms must be properly parameterized to
obtain a better computational performance, a process that could also be included automatically. An
interesting consequence of the result is that the automation process adopted significantly accelerates
research in this field. Many algorithmic combinations can be explored with low computational effort;
in fact, the reported experiment lasted 158 minutes.
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Algorithm 1 Generated algorithm
1: function FUNCTION
2: if 2-opt() then

3: for 1 to k do

4: 2-opt();

5: 2-opt();

6: end for

7 end if

8: end function

9: repeat

10: «a <+ false;

11: B <+ false;

12: for 1 to k and FUNCTION() = true do
13: a ¢+ true;

14: LinearCooling();

15: end for
16: if o = true and 2-opt() then

17: for 1 to k and LogCooling() do
18: B <+ true;

19: Deterministic_ChooselfBetter();
20: end for

21: end if

22: if @ = true and 8 = true and SwapCities() then
23: if 2-opt() then

24: FuNCTION();

25: end if

26: else

27: break;

28: end if

29: until iter = n

5 Conclusions

This work described a process for the automatic design of metaheuristics for TSP. The algorithms
were produced by automatic generation algorithms through genetic programming from a set of
elementary components. In particular, we used terminals based on the metaheuristic algorithms
ILS, SA, and VNS. The resulting algorithms are combinations of existing metaheuristics, and
the best algorithm found is a variant of ILS. However, the generated metaheuristic provides good
performance in terms of the solution quality in a very short computational time. Future research will
focus on improving the performance of the generated metaheuristics and combining the different
components of the metaheuristics in a better way. Additional future research will focus on extending
the proposed method to other variants of the TSP or even other optimization problems.

Acknowledgment

This research was partially funded by the Complex Engineering Systems Institute (ICM: P-05-004-
F, CONICYT: FB016). We also acknowledge projects USA1899-Vridei 061919VP-PAP Universi-
dad de Santiago de Chile, DICYT-USACH 061919PD, and VRID INICIACION 220.097.016-INI,
Vicerrectoria de Investigacién y Desarrollo (VRID), Universidad de Concepcién.

References

1. Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms. 6th edn. Volume 21 of
Algorithms and Combinatorics. Springer Berlin Heidelberg, Berlin, Heidelberg (2018)

2. Papadimitriou, C.H., Steiglitz, K.: Combinatorial optimization: algorithms and complexity. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA (1982)

3. Conforti, M., Cornuéjols, G., Zambelli, G.: Integer Programming. Volume 271 of Graduate Texts in
Mathematics. Springer International Publishing, Cham (2014)

136



10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Automatic generation of metaheuristic algorithms 7

Schrijver, A.: Theory of linear and integer programming. John Wiley & Sons, Inc. (1998)

Toth, P., Vigo, D.: Vehicle Routing: Problems, Methods, and Applications. 2nd edn. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA (2014)

Kolker, A.: Healthcare Management Engineering: What Does This Fancy Term Really Mean? Springer
New York, New York, NY (2012)

Wright, M.: Operational Research Applied to Sports. Palgrave Macmillan UK, London (2015)

Silver, E.A., Pyke, D.F., Thomas, D.J.: Inventory and Production Management in Supply Chains. 4th
edn. Taylor & Francis, Boca Raton (2016)

Wang, J.: Management Science, Logistics, and Operations Research. Advances in Logistics, Operations,
and Management Science. IGI Global (2014)

Talbi, E.G.: Metaheuristics: From Design to Implementation. John Wiley & Sons, Inc., UK (2009)
Gendreau, M., Potvin, J.Y., eds.: Handbook of Metaheuristics. Volume 272 of International Series in
Operations Research & Management Science. Springer International Publishing, Cham (2019)

Blum, C., Puchinger, J., Raidl, G.R., Roli, A.: Hybrid metaheuristics in combinatorial optimization:
A survey. Applied Soft Computing 11 (2011) 4135-4151

Blum, C., Raidl, G.R.: Hybrid Metaheuristics: Powerful Tools for Optimization. Artificial Intelligence:
Foundations, Theory, and Algorithms. Springer International Publishing, Cham (2016)

Hassan, A., Pillay, N.: Hybrid metaheuristics: An automated approach. Expert Systems with Appli-
cations 130 (2019) 132-144

Raidl, G.R., Puchinger, J., Blum, C.: Metaheuristic hybrids. In Gendreau, M., Potvin, J.Y., eds.:
Handbook of Metaheuristics. Springer International Publishing, Cham (2019) 385-417

Ting, T.O., Yang, X.S., Cheng, S., Huang, K.: Hybrid metaheuristic algorithms: Past, present, and
future. In Yang, X.S., ed.: Recent Advances in Swarm Intelligence and Evolutionary Computation.
Springer International Publishing, Cham (2015) 71-83

Acevedo, N.; Rey, C., Contreras-Bolton, C., Parada, V.: Automatic design of specialized algorithms
for the binary knapsack problem. Expert Systems with Applications 141 (2020) 112908
Contreras-Bolton, C., Gatica, G., Parada, V.: Automatically generated algorithms for the vertex
coloring problem. PLoS ONE 8 (2013) e58551

Ryser-Welch, P.; Miller, J.F., Asta, S.: Generating human-readable algorithms for the travelling sales-
man problem using hyper-heuristics. In: Proceedings of the Companion Publication of the 2015 on
Genetic and Evolutionary Computation Conference - GECCO Companion ’15, New York, New York,
USA, ACM Press (2015) 1067-1074

Pétrowski, A., Ben-Hamida, S.: Evolutionary Algorithms. John Wiley & Sons, Inc., Hoboken, NJ,
USA (2017)

Bertolini, V., Rey, C., Sepilveda, M., Parada, V.: Novel methods generated by genetic programming
for the guillotine-cutting problem. Scientific Programming 2018 (2018) 1-13

Contreras-Bolton, C., Rey, C., Ramos-Cossio, S., Rodriguez, C., Gatica, F., Parada, V.: Automatically
produced algorithms for the generalized minimum spanning tree problem. Scientific Programming 2016
(2016) 11

Loyola, C., Sepulveda, M., Solar, M., Lopez, P., Parada, V.: Automatic design of algorithms for the
traveling salesman problem. Cogent Engineering 3 (2016)

Parada, L., Herrera, C., Sepilveda, M., Parada, V.: Evolution of new algorithms for the binary
knapsack problem. Natural Computing 15 (2016) 181-193

Hassan, A., Pillay, N.: A meta-genetic algorithm for hybridizing metaheuristics. In Oliveira, E., Gama,
J., Vale, Z., Lopes Cardoso, H., eds.: Progress in Artificial Intelligence. Springer, Cham (2017) 369-381
Stiitzle, T., Lopez-Ibanez, M.: Automated Design of Metaheuristic Algorithms. In M., G., J.Y., P.,
eds.: Handbook of Metaheuristics. Volume 272. Springer, Cham (2019) 541-579

Lépez-Ibénez, M., Dubois-Lacoste, J., Pérez Caceres, L., Birattari, M., Stiitzle, T.: The irace package:
Iterated racing for automatic algorithm configuration. Operations Research Perspectives 3 (2016)
43-58

Lépez-Ibéfiez, M., Kessaci, M.E., Stiitzle, T.: Automatic Design of Hybrid Metaheuristics from Algo-
rithmic Components. Technical report, TR/IRIDIA /2017-012, IRIDIA, Université Libre de Bruxelles,
Belgium (2017)

Marmion, M.E., Mascia, F., Lépez-Ibafiez, M., Stiitzle, T.. Automatic design of hybrid stochastic
local search algorithms. In: Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics). Volume 7919 LNCS., Springer, Berlin,
Heidelberg (2013) 144-158

Lépez-Ibdnez, M., Stutzle, T.: The automatic design of multiobjective ant colony optimization algo-
rithms. IEEE Transactions on Evolutionary Computation 16 (2012) 861-875

Alfaro-Ferndndez, P., Ruiz, R., Pagnozzi, F., Stiitzle, T.: Automatic Algorithm Design for Hybrid
Flowshop Scheduling Problems. European Journal of Operational Research 282 (2020) 835-845
Tezel, B.T., Mert, A.: A cooperative system for metaheuristic algorithms. Expert Systems with
Applications 165 (2021) 113976

137



33.

34.

35.

36.

37.

38.

39.

S. Iturra et al.

Pagnozzi, F., Stiitzle, T.: Automatic design of hybrid stochastic local search algorithms for permutation
flowshop problems. European Journal of Operational Research 276 (2019) 409-421

Pagnozzi, F., Stiitzle, T.: Evaluating the impact of grammar complexity in automatic algorithm design.
International Transactions in Operational Research 00 (2020) itor.12902

Pagnozzi, F., Stiitzle, T.: Automatic design of hybrid stochastic local search algorithms for permutation
flowshop problems with additional constraints. Operations Research Perspectives 8 (2021) 100180
Eiben, A., Smith, J.: Introduction to Evolutionary Computing. 2nd edn. Natural Computing Series.
Springer Berlin Heidelberg, Berlin, Heidelberg (2015)

Poli, R., Langdon, W.B., Mcphee, N.F.: A Field Guide to Genetic Programming. Lulu Enterprises,
UK Ltd (2008)

Luke, S., Sean: Ecj then and now. In: Proceedings of the Genetic and Evolutionary Computation
Conference Companion on — GECCO ’17, New York, New York, USA, ACM Press (2017) 1223-1230
Reinelt, G.: TSPLIB-A traveling salesman problem library. ORSA Journal on Computing 3 (1991)
376-384

138



Particle swarm optimisation without panopticon to evaluate
private social choice

Viceng Torra and Edgar Galvan

! Department of Computing Science, Ume University, Umed, Sweden, vtorra@ieee.org
2 Naturally Inspired Computation Research Group, Department of Computer Science, Maynooth
University, Lero, Maynooth, Ireland, edgar.galvan@mu.ie

Abstract. In a recent paper we introduced differentially private random dictatorship as a
private mechanism for social choice. Differentially private mechanisms are evaluated in terms
of their utility and information loss. In the area of social choice it is not so straightforward
to evaluate the utility of a mechanism. It is therefore difficult to evaluate a differentially
private social choice mechanism.

In this paper we propose to use a particle swarm optimization-like problem to evaluate our
differentially private social choice method. Standard particle swarm optimization (PSO) can
be seen in terms of a panopticon structure. That is, a structure in which there is a central
entity that knows all of all. In PSO, there is a particle or agent that knows the best position
achieved by any of the particles or agents. We propose here PSO without panopticon as a
way to avoid an omniscient agent in the PSO system.

Then, we compare different social choice mechanisms for this PSO without panopticon, and
we show that differentially private random dictatorship leads to good results.

1 Introduction

In our recent work [12], we studied random dictatorship [2, 4] as voting mechanism that satisfies dif-
ferential privacy under some conditions, and defined a variation of this method that is differentially
private.

In data privacy [11,5,13] data protection mechanisms are often evaluated in terms of their
utility. Data protection mechanisms based on secure multiparty computation are known to be good
with respect to utility as they provide loss-less computation and do not make any perturbation
on the output of the function. In contrast, data protection mechanisms that follow differential
privacy [3] or k-anonymity [8] cause some information loss to the data or computation.

As a result of this, it is relevant to evaluate the utility of random dictatorship and of its
differentially private version.

Nevertheless, the evaluation of the utility of a voting mechanism is an ill-defined problem. Vot-
ing mechanisms are usually evaluated in terms of their properties based on individual preferences.
Examples of properties include [1,2,9] Condorcet conditions, the independence of irrelevant alter-
natives, etc. These conditions are defined assuming that voters possess ordinal utility functions.
That is, voters have an order on the alternatives (e.g., they prefer alternative a; to alternative az).
In contrast, it is not considered a numerical evaluation of each alternative.

It is known that a numerical utility model does not fit well with voting procedures. Observe that
for any ordinal utility function (i.e., a; is preferred to as), there are infinitely many (numerical)
utility functions compatible with the ordinal one. Moreover, if we consider (numerical) utility
functions for each voter (i.e., a numerical value for each alternative as u;(a1), u;(a2), ... for voter
i), the majority rule does not necessarily maximize the total utility. That is, if we define the social
good of a selected alternative as the addition of voters’ utility for this alternative (3 u;(a) for
selected alternative a), majority voting does not necessarily lead to the best option. The same
applies to other social choice mechanisms.

In this paper we propose a federated learning [7] type of problem using particle swarm optimi-
sation (PSO) [6] to evaluate private social choice mechanisms (as the one introduced in [12]). The
goal is to find an optimal (aggregated) position that is the best for a set of agents. The problem
is formulated as a particle swarm optimisation (PSO) problem [6] in which there is no omniscient
agent with knowledge of the so-far best optimal position for all as it is the case for standard PSO.

139



2 Torra and Galvan

I.e., no panopticon, as we say. The best optimal position is obtained through successive voting in
line with successive aggregations in federated learning.

The structure of this paper is as follows. In Section 2 we review probabilistic social choice and a
differentially private version of it. In Section 3 we review particle swarm optimisation and introduce
particle swarm optimisation without panopticon. This later approach is to avoid the system of
particles omniscient on the best position of each particle. Section 4 discusses the evaluation of
differentially private social choice in terms of particle swarm optimisation. The paper finishes with
some conclusions and directions for future work.

2 Probabilistic social choice

Let I be a set of agents and A a set of alternatives. Let the goal be to select the preferred alternative
for the set of agents. That is, the alternative that most of the agents prefer.

To formulate this problem we model agents preferences in terms of preference relations on the
set of alternatives. That is, the preference relation »=; is defined in terms of subsets of A x A. In
our context, we have only access to the best preferred option of an agent i € I and this is just its
vote, an alternative a € A. So, for all a’, a =; o’ for this agent i € I.

Plurality voting is to select the alternative that receives the most votes or preferences. In
contrast, uniform random dictatorship proceeds as follows.

Method 1 From [12]. This method selects an agent i in I according to a uniform distribution on
I, and then uses >; to select the most prefered alternative by agent i as outcome. That is, once i
is selected from I, the method returns a € A such that a =; o’ for all a’ € A.

This approach can be equivalently implemented considering all alternatives, their frequency
(votes), and then selecting one alternative using a probability distribution proportional to the
frequency.

We defined in [12] two differentially private versions of random dictatorship. Their difference
was on whether the voting was compulsory or optional. We give below the definition where voting
is not compulsory but optional.

Method 2 From [12], let A = {a1,...,am} be the set of alternatives. Let I be the set of agents,
and let =; be the corresponding preference relations for i € I on the alternatives A. Then, enlarge
I with a set of agents Iy = {e1,...,em} such that =; for i € Iy has as its prefered alternative the
ith alternative in A.

Then, apply uniform random dictatorship on I U Iy.

This voting procedure satisfies differential privacy for an appropriate parameter €. The following
lemma establishes bounds for the € parameter.

Lemma 1. From [12], differentially private random dictatorship as defined in Method 2 satisfies
differential privacy for any
c>1 2|ITU Iy

=80T+ 1

For a large number of agents, it is easy to see that we can compute a bound for e. That is,
€ > log(2) = 0.6931. Naturally, the more alternatives we have, the more agents we need to tend
to this limit. Figure 1 represent the bound in Lemma 1 for 4, 8 and 16 alternatives. As we will
describe later, we use in our experiments 8 alternatives. The corresponding figure shows the bound
for a number of agents between 3 and 200.

When we can ensure that there is at least an agent for each alternative, we have bounds that
do not depend on the alternative. Nevertheless, this is not necessarily the case in our scenario.
See [12] for details.

3 Particle swarm optimisation based evaluation

As briefly mentioned in the introduction, we define the evaluation scenario in terms of PSO [6].
We have a function f : R” — R and we are interested in finding its minimum. To do so, we have
a set of S agents or particles. Each particle i € {1,...,5} has a position p; in the n dimensional
space, and a velocity v;.
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Fig. 1. Bounds for the e parameter (y axis) in differentially private random dictatorship as defined in
Method 2 using the results of Lemma 1 (read text). We have considered the case of 4, 8, and 16 alternatives
(left, middle, and right graphs) and the number of agents ranging from 3 to 200 (x axis).

3.1 Standard particle swarm optimisation

In a standard particle swarm optimisation solution, each particle records the best position found
so far. This is denoted by b;. In addition, we keep track of the global best position found so far in
the whole system. This is denoted by g¢.

The procedure iteratively computes a new position for each particle until a certain termination
criteria is met. In each iteration, the best position is updated when necessary. More precisely, for
the ith particle, we compute a new velocity:

v; = wv; + oprp(bi — pi) + dg7g(9 — pi) (1)

where w is the inertia weight, ¢, and ¢, are acceleration coefficients one for the best position of
the particle and the other for the best global position; and where 7, and r, are random vectors
following a uniform distribution in [0,1].

Then, we update the position of the ith particle as follows:

Pi = pi + v;.

When f(p;) < f(b;) then we update the best position b; = p;, and if f(p;) < f(g) then we
update the global best position g = p;.

3.2 Particle swarm optimisation without panopticon

In PSO, the position of any agent or particle is public. Our scenario differs from the standard PSO
scenario because we consider it private. Therefore, we cannot use the global best position g when
computing a new position or velocity for any particle.

Instead, we consider an additional system particle that is led by all the particles. This system
particle has its own position and velocity. We denote them by pg and vg, respectively. These
position and velocity are public.

The position pg is analogous to the aggregated model in federated learning. This position is
based on agent’s positions, and it is computed as an aggregation (using our social choice mecha-
nisms) of previous and current information.
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As the best global position g is not available, Equation 1 cannot be used. Thus we compute the
velocity of each particle in a slightly different way. As the system particle position is known and
any particle can evaluate whether this position is better or not than its own, we update particles
velocity taking advantage of this knowledge. Formally,

o {Wi + ¢grg(pe —pi)  itf(pc) < f(pi) )
! wv; + ¢prp(bi — pi) otherwise.

Equation 2 is similar to Equation 1 but updating does not depend on g, and the updating rule
depends on whether the ith particle is in a better position than system’s one (i.e., f(pa) < f(p:)).

Updating of system’s position needs to take into account that access to other particles’ positions
is not permitted. Our proposal is that particles can provide a direction where to lead the system
particle. This direction plays the role of the velocity vector, but there are two main differences.

— One is that the direction is a vector but it does not have a magnitude.
— Another one is that not all directions are possible, but only a limited number of them.

We have these constraints because we consider that supplying an arbitrary direction or velocity
is not feasible from a privacy perspective: the space of alternatives would be too large to protect
(too many possible angles and magnitudes).

The number of directions ng is a parameter of the system. This parameter is interpreted ac-
cording to the following example. In this work we only consider functions with two variables, so
they are functions of the form f: R? — R. So, all ng directions are on the plane.

When ng = 4 it means that particles can vote for four directions and they correspond to the
following direction vectors (1,0), (0,1), (—1,0) and (0,—1). In general, each possible direction
a=0,...,ng4 corresponds to a different angle, all angles are equally spaced in [0, 27] and they are
defined with respect to the (1,0) vector. At a given time, each particle computes its angle with
this vector (1,0), say «;, and then vote for the option |a/(27)] which is the nearest option to their
own preferred angle.

Given a set of particles, from their votes for their preferred angle, we can select an angle using
any social choice approach. In particular, we can use plurality voting (i.e., select the most frequent
angle), random dictatorship, and differentially private random dictatorship for selecting an angle.
This process leads to an angle o which can then be used to find a direction vector v, . That is,
Uae 1s the unit vector with angle a with the vector (1,0). Once the vector is known, we update
the global position as follows:

PG = PG + WGVag,

where wg is the inertia weight of the global position.

3.3 Analogy with federated learning

Our approach has similarities with the standard procedure in federated learning. Note that agents
access pg. S0, we assume that this information is publicly available. This is similar to accessing
the average model in federated learning. Then, the information that agents provide in our system,
that is, direction, can be seen as the difference between the global model and the local model in
federated learning. Our approach is more restrictive than in federated learning, as we are dealing
with a context in which agents can only vote for a few options. This has, of course, advantages
from a privacy point of view.

4 On the evaluation of differentially private social choice

We have considered different scenarios in order to evaluate differentially private social choice.
Different scenarios differ on the function to be minimized, the social choice procedure, and the
parameters of the system. We discuss these elements below.
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4.1 Functions

In order to evaluate our approach we have used the following functions in R2, selected from the
review work by Sengupta et al. [10] on particle swarm optimisation. For each function we also
include the range of the two variables (1, z2).

We have selected functions in R? because they provide a simple scenario with only a few voting
options and compatible with the example in [12] of a cohort of drones guiding a ground vehicle.
Drones vote continuously to guide the vehicle. The selected direction, landmark or position at any
time is not so important. It is the overall set of decisions (the rough path) what influences the
trajectory of the vehicle.

The functions we consider are the following ones.

— Quadratic function (x1,z2 € [—100.0,100.0]):
fl(.Z'l,.%'Q) = x% + .%‘%
— Schwefel’s problem 2.22 (z1,z2 € [—10.0,10.0]):

fa(w1, ) = |w1| + 22| + |21 - |22

Schwefel’s problem 1.2 (z1,x2 € [—100.0,100.0]):
falxr,22) = 2% + (21 + 22)?
— Generalized Rosenbrock’s function (x1,z9 € [-2.0,2.0]):

f4(IL’1,ZL‘2) = 100 % (iL‘Q — T *$1)2 + (CL‘l — 1)2

Generalized Schwefel’s problem 2.26 (z1,z2 € [—500.0,500.0]):

fs(@1,w2) = —zysin(y/|21]) — zasin(y/[22])

— Rastrigin’s function (x1,z2 € [-5.12,5.12]):
fo(z1,22) =210 + 2? — 10cos(2x17) + 3 — 10cos(22o7)
— Ackley’s function (z1,x2 € [—32.768, 32.768]):
f7($171'2) _ _206—0.2\/0.5@%—&-‘%%)

_60.5605(2$17r)+cos(2x27r) +90+e
— Griewank function (x1,z2 € [—600.0,600]):

fs(x1,22) = 1+ (1/4000) (22 + 22) — cos(z1) * cos(xa/V2)

The optimal solutions for these problems correspond to a function equal to zero, except in the
case of f5 where the best solution corresponds to -12569.5.

4.2 Social choice procedures
The social choice procedures we have considered are:

— plurality voting,
— random dictatorship, and
— differentially private random dictatorship.

Social choice with plurality voting and random dictatorship are used as base line social choice
procedures.

In addition, we have also implemented standard PSO. That is, there is an omniscient agent that
observes all other agents and stores the best/optimal position found so far. This agent represents
the guard in the panopticon.

Then, we consider for each of the three procedures above, two cases according to whether a
particle votes or not. They are the following ones:
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— A particle always votes;
— A particle only votes when its position is better than the best one, and in this case, decision
to vote is based on a probability.

Thus, we have 7 different approaches: (i) PSO, (ii) plurality voting (PV), (iii) random dictator-
ship (RD), (iv) differentially private random dictatorship (DRD), and (v) plurality voting (bPV),
(vi) random dictatorship (bRD), and (vii) differentially private random dictatorship (bDRD) only
among those agents that have a position better than the global one.

4.3 Parameters

Our system is defined by the number of particles, the inertia weight w, and the velocities ¢,, ¢4
and the inertia weight wg. In addition, social choice procedures can have additional parameters
corresponding to the probabilities related to when to vote. We assume that all particles use the
same parameter’s values.

We have used different sets of values for the parameters w, ¢,, ¢4, and wg. They are the
following ones.

— w: 0.005, 0.001, 0.05, 0.1, 0.2, 0.4
— ¢p = dg: 0.01, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0
— wg: 0.005, 0.01, 0.05, 0.1, 0.2, 0.4

We have used 50 particles and 1000 iterations to compare the results. That is, 1000 voting
processes. A few additional examples that are shown in the figures have been considered with
additional iterations (10000 iterations). We have used 8 voting options, corresponding to an angle
of 27 -i/8 for i = 0,...,7 from direction (1,0). We have considered 30 executions, for each of the
assignments considered.

4.4 Experiments

We evaluate the utility of differentially private random dictatorship using as test-bed the opti-
misation problems defined above and as a methodology to solve this problem the particle swarm
optimisation without panopticon (as defined in Section 3.2) as well as using the social choice
procedures in Section 4.2 with the parameters described in Section 4.3.

Our goal is to see if the differentially private random dictatorship has a comparable behaviour
to the ones supposedly better of plurality voting and random dictatorship. To that end, we

— compare the solutions obtained using the three social choice procedures, and
— compare different parametrisations (when particles vote, parameters used).

In addition, we use PSO as the reference value. Nevertheless, as it keeps track of the best
solution found so far, we expected PSO to outperform the other methods.

For each set of parameters considered, we have computed the mean of the optimal function
found. That is, a mean of the values (MeanF) obtained for the 30 different executions. We have
also recorded the minimum (MinF) obtained in these 30 executions. Table 1 displays optimal values
of MeanF and MinF found for each function and each method: PSO — on the top row, right column;
PV, RD, and DRD — middle row, from left to right; bPV, bRD, and bDRD — bottom row, from
left to right. Between brackets we display the parameters w, ¢, = ¢, and wg used to obtain the
optimal solution.

PSO vs. social choice procedures PSO is always better than any other social choice procedure.
Except for problem f5, PSO reaches always the minimum for the 30 executions. That is, except for
f5, both meanF and minF are always zero. Best PSO solutions are in most of the cases obtained
with the parameters w = 0.005, ¢, = ¢4, = 2, and wg = 0.005.

As stated above, this is a natural consequence of PSO being omniscient and keeping track of the
best positions found by any agent. Nevertheless, as we show below, the solutions of social choice
procedures are also very good and equal in practice for most problems.

144



PSO with Panopticon to evaluate private social choice 7

Function / PV / bPV RD / bRD PSO / DRD / bDRD

f MeanF 0.0 (0.005 2.0 0.005)

8.46 -10~° 7.50-107% 1.26-107° (0.1 2.0 0.005)
7.63-107° 6.93-107% 1.45-107° (0.4 2.0 0.005)
f MinF 0.0 (0.005 2.0 0.005)
2.20-107° 1.58 1075 6.97 .10 (0.05 2.0 0.005)
9.83-1078 1.00- 1075 8.50 - 1078 (0.01 2.0 0.005)
fa MeanF 0.0 (0.005 2.0 0.005)
0.0033 0.0033 0.0037 (0.01 2.0 0.005)
0.0034 0.0032 0.0041 (0.2 2.0 0.005)

fo MinF 0.0 (0.005 2.0 0.005)
0.0017 0.0010 9.70 -107* (0.05 1.0 0.01)
4.95-107* 6.59-107* 2.50-10"* (0.2 0.5 0.005)
f3 MeanF 0.0 (0.005 2.0 0.005)
1.00-107° 1.10-107° 1.68-107° (0.4 1.0 0.005)
9.62-107° 9.98-107% 2.05-107° (0.2 2.0 0.005)
fa MinF 0.0 (0.005 2.0 0.005)
8781078 5.94-1077 7.41-107% (0.2 2.0 0.005)
2.87-1077 2.98-1077 6.56-10~7 (0.1 1.0 0.005)
fa MeanF 0.0 (0.2 2.0 0.005)

0.0667 0.0050 0.0070 (0.4 2.0 0.005)
0.0284 0.0027 0.0054 (0.2 2.0 0.005)

fa MinF 0.0 (0.005 2.0 0.005)
0.0063 1.57-107* 7.67-107° (0.4 2.0 0.005)
9.52-107* 4.64-107% 4.36-107° (0.005 0.2 0.1)
fs MeanF — -668.00 (0.05 2.0 0.4)
-7.8904 -7.8904  -7.8903 (0.005 2.0 0.05)
-7.8905 -7.8905  -7.8905 (0.005 1.0 0.01)

fs MinF -837.96 (0.005 2.0 0.005)
-7.89 -7.89 -7.89 (0.1 2.0 0.05)

-7.89 -7.89 -7.89 (0.01 0.05 0.01)

fo MeanF 0.0 (0.005 2.0 0.05)

6.96 0.83 1.18 (0.05 1.0 0.05)

6.18 1.02 1.19 (0.1 1.0 0.05)

fo MinF 0.0 (0.005 2.0 0.005)
5.40-107% 3.93-107* 2.91-107° (0.1 2.0 0.005)
2.83-107* 2.30-10"* 1.23-10"* (0.05 0.5 0.01)
fr MeanF  4.44-10® (0.005 2.0 0.005)
0.40 0.09 0.14 (0.4 0.1 0.05)

0.25 0.11 0.16 (0.05 0.1 0.05)

fr MinF 4.44-107° (0.005 2.0 0.005)
0.0043 0.0036 6.18 - 10™* (0.05 2.0 0.005)
0.0011 0.0017 0.0019 ( 0.005 0.5 0.005)
fs MeanF 0.0 (0.005 2.0 0.005)
3.08-107¢ 2.50-107% 5.16-107° (0.2 2.0 0.005)
2.56 - 10~° 2.64 -107°% 4.30 - 107° (0.005 2.0 0.005)
fs MinF 0.0 (0.005 2.0 0.005)
8.05-1077 5.11-1077 7.41-107% (0.2 1.0 0.005)
2.62-1077 5.59-10% 1.61-107% (0.4 0.05 0.01)
Table 1. Optimal values obtained for the functions fi,..., fs using PSO and the three social choice

procedures (for both voting strategies: always voting, only voting if better than global optimum). For
each function we display MeanF (top) and MinF (bottom) objective functions achieved. For each pair
(function, MeanF/MinF), we have on the first line: Name of function, value displayed, result using PSO
(and parameters w, ¢p = ¢4 and we of the optimal result). On the second line we have the results obtained
using PV, RD, and DRD and on the third line the results obtained using bPV, bRD, and bDRD.
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For problems f1, fa, f3, f4 and fs (see Section 4), the optimal values achieved for PSO are 0
and social choice procedures give solutions with values at least less than 0.009, often very close to
zero, the global solution. In particular, for fg we find a solutions with differentially private random
dictatorship (DRD) with an objective function equal to 7.41-107Y. See also solutions for f1, fa, f3,
fa in Table 1 that are virtually zero. Note that in the table we display both mean values (MeanF)
and the best solution found (MinF).

For problem f5 (with global minimum of -12569.5), PSO obtains a meanF value of -668, and
the best of the 30 executions leads to minF equal to -837. Social choice solutions (both for meanF
and minF) have an optimal value of around -7. These are the worst results for both PSO and social
choice procedures.

For the other problems, fgs, f7 the best social choice solutions are meanF = 0.83 and minF =
2.91-107°, and meanF=0.0979 and minF=6.18 - 10~4, respectively.

Social choice procedures and differentially private random dictatorship Among the social
choice procedures, for most of the problems the best solutions are either random dictatorship or
differentially private random dictatorship. In some cases solutions are better by a factor of 10 or 100
to the one obtained with plurality voting. So, we can state that randomness is not an inconvenience
but an advantage.

Only for f3 the best solutions are obtained using plurality voting. However, in this case, the
values achieved by the three social choice procedures are very similar. Observe in Table 1 that the
values meanF are 9.62 - 1076 for bPV and 9.984 - 10~% for bRD.

When we compare the case of agents always voting and the case of agents only voting when
they have a position better than the global one, we have, as expected, that in most cases, results
are better when only those agents with better positions vote.

With respect to parameters of the best solutions, there is more variety here than when using
PSO. We can observe in the table that DPD and dDPD has most solutions with ¢, = ¢, = 2.0
but the best solutions for f, are with ¢, = ¢, = 0.5 and for f3 are with ¢, = ¢, = 1.0.

Figure 2 shows the evolution of the system particle when differentially private random dicta-
torship is used. We can see that except for the problem fg the system particle tends to move to
the optimal solution. For f5 the optimal solution found is far from optimal. This evolution is much
faster when particles only vote when they know to be in a better position than the system particle.
This is illustrated in Figure 3.
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Fig. 2. Objective function for problems fi, f2, fs, f6, f7, fs (right to left, top to bottom) listed above when
differentially private random dictatorship is used. The number of alternatives considered is 8 and the
number of particles is 100.
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Fig. 3. Objective function for problems fi, f2, fs, fe, f7, fs (right to left, top to bottom) when differentially
private random dictatorship is used and when particles only vote if they know to be in a better position.
The number of alternatives considered is 8 and the number of particles is 100.

To illustrate that the plurality vote is not always the best alternative, we show the results
obtained for Ackley’s function f7. Figure 4 shows the results for the three social choice procedures:
plurality rule (left), random dictatorship (middle), and differentially private random dictatorship
according to Method 2 (right). Dots correspond to the case of all particles always voting, and lines
to the case that only those particles with a better position vote. It can be clearly seen that the
plurality rule is not best, and that voting only when a better position is found is clearly better.
Recall that the optimal solution for this problem is when the function is exactly zero.

Fig. 4. Objective function for the Ackley’s function f; when plurality rule (left), random dictatorship
(middle), and differentially private random dictatorship (right) are used. Dots correspond to all particles
voting and lines to only those particles having a better solution than the system particle voting. The
number of alternatives considered is 8. Random dictatorship only voting when solutions are better is the
one with the fastest convergence.

Summary The results of our experiments can be summarised stating that

— standard PSO (with panopticon) is the most effective approach considered, but PSO without
panopticon is also quite effective and some solutions have no significant difference,

— among social choice procedures implementing our variation of PSO (without panopticon),
plurality voting is usually not the best option,

— particles voting only when their solution is better is a better approach than particles voting in
all occasions, and, last but not least,
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10 Torra and Galvan

— differentially private random dictatorship can be seen as comparable to random dictatorship.

Therefore, we consider that a qualitative conclusion is that differentially private random dicta-
torship is a suitable approach to be used in this type of scenario.

5 Conclusions

This paper focuses on the evaluation of differentially private social choice and more particularly
on differentially private random dictatorship. It is standard to evaluate data privacy mechanisms
in terms of their utility or in terms of the loss they cause. Social choice mechanisms are not so
straightforward to evaluate because the preferences or opinions of the agents are assumed to be
expressed in ordinal terms. This is an important assumption. Our approach permits to evaluate
social choice under these assumptions. We have proposed a scenario based on an objective function
to optimise by a set of agents, and use a PSO-like procedure for obtaining the best solution through
an iterative voting procedure. When numerical evaluations of the preferences exist (through e.g.
utility functions), other mechanisms (as aggregation of utility functions) should be used.

We have shown that in our scenario, the results of differentially private random dictatorship are
similar to those for random dictatorship, and usually better than those obtained with the plurality
voting (i.e., selecting the most preferred option).

As future work we plan to study agents with different privacy requirements (e.g., privacy
budgets) and how these different privacy requirements can affect the outcome of the system. Among
the privacy options to consider, we have the case that agents want to refrain from voting (opt-out).
Our experiment results used 50 particles in two dimensional problems, we will explore the case of
larger number of particles and larger dimensions for the problem.
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1 Introduction

The problem of cutting a large plate of raw material into a specified set of smaller objects is a
common industrial challenge in glass [1], paper [2], wood [3], and steel [4] industries, among others.
This problem is referred as the 2-dimensional cutting stock problem (2DCSP for short) [5]. It aims
at cutting all the smaller objects with the minimum amount of raw material. In this paper, we
refer to the large plate of raw material simply as plate and to the smaller objects as items. Besides,
as in [6-9], we assume that they are two-dimensional and have a rectangular shape.

3-cut 3—-cut l-cut

2-cut

Fig.1: An example of a cutting pattern.

We focus on the variant of 2DCSP called the 2-dimensional 3-staged cutting stock problem
subject to guillotine constraints (2DCSP-3S for short) [6,7,9]. In this variant, only guillotine cuts
are allowed, i.e., cuts that go from one side to the opposite side of the plate and split it into
two rectangular pieces. These cuts are divided into stages, where each cutting stage consists of a
sequence of parallel guillotine cuts. At each stage, the cuts are orthogonal to those of the previous
stage, since each piece of plate is rotated by 90° before the next cutting stage begins. We refer to a
k-cut as a guillotine cut performed in the k-th stage. Besides, we assume that the plate is oriented
such that its width is larger than its height, and that the odd staged cuts are vertically oriented,
while the even staged cuts are horizontally oriented. An example of a 3-stage cutting pattern used
to separate three items from a plate is shown in Figure 1, where the items are numbered from 1
to 3 and the unused pieces of plate are shadowed.

This cutting pattern can be interpreted as a tree, where the root node (at level 0) corresponds
to the whole plate, and each node in the k-th level of the tree corresponds to a piece of plate
obtained from a k-cut to the piece of plate of its parent node. Therefore, the leaves of this tree
corresponds to either items or unused pieces of plate. It is assumed that cuts are performed using
a depth first approach in this tree to avoid changing the piece of plate that is in the guillotine.
An example of the tree representing the cutting pattern of Figure 1 is given in Figure 2. First, a
vertical 1-cut is applied to the root node to detach an unused piece of plate. Next, a horizontal
2-cut is performed to extract the item 1. Then, two successive vertical 3-cuts are executed to obtain
items 2 and 3, as well as another unused piece of plate.
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1-cut

2—cut

1

/\

3-cut 3-cut

Fig. 2: Representation of the cutting pattern of Figure 1 as a tree.

In the case of 2DCSP-3S, the maximum number of stages is limited to three. However, a single
additional 4-cut is allowed if and only if it is used to separate a single item from an unused piece
of plate [6,10-12]. This is known in the literature as trimming. Figure 3a shows an example of
trimming, where the item 3 is separated from an unused piece of plate by a single 4-cut, while
Figure 3b gives an example of an invalid 4-cut used to separate item 3 from item 4.

3-cut 1-cut 3-cut 1-cut

4-cut

2-cut

2-cut

(b)
Fig. 3: Example of a 4-cut cut allowed (a) and not allowed (b).

In this paper, we deal with a variant of 2DCSP-3S that has additional precedence constraints
that was recently introduced in [13]. In this case, the items are organized in stacks, where each
stack represents a customer request and defines the order in which the items must be cut. That
is, if item ¢ precedes item j within a stack, then ¢ must be cut before j. However, there is no
precedence constraint between items in different stacks. This constraint comes from applications
where items must be stacked and shipped in the exact order that they will be used by the customer,
thus avoiding the risk of damaging fragile items (as is the case in the glass industry) or the cost
of moving heavy items (as is the case in the steel industry). We refer to this variant of 2DCSP-3S
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as the 2-dimensional Guillotine Cutting Stock Problem with Stack Constraints (2DCSP-SC). This
problem is formally defined below.

Let W and H be the width and the height of the plates, respectively, and I be the set of
items to be cut, where each item ¢ € I has height h; and width w;. Besides, let S be the set of

stacks that represent customer orders, whereas b = (77, 75,..., 7, ) describes the order in which
the items from stack s € S must be cut, such that 7} € I must be cut before 77, € I, for all
E={1,...,ns — 1}, where ny is the number of items in s.

A solution to 2DCSP-SC consists of a sequence of cutting patterns P that describes how, and
in which order, the plates must be cut. This solution must satisfy all the following constraints: (%)
the plate cannot be rotated; (i7) the items can only be rotated by 90°; (i) all items in I must
be cut exactly once; (iv) if i € I precedes j € I in a stack, then ¢ must be cut before j; (v) only
guillotine cuts are allowed; and (vi) the number of cutting stages is at most three along with the
additional 4-cut, as previously described.

The cost f(P) of a solution P to 2DCSP-SC is the amount of raw material used to cut all items.
As in [6,14-16], the unused pieces of plate that result from the cutting patterns P are divided into
two types. The so called leftover is the material to the right of the last 1-cut applied to the last
plate. It is assumed that this piece of plate can be reused, and it is not considered in f(P). All
the other unused pieces of plate are considered waste, as it is assumed that they cannot be reused.
For example, in Figure 3a, the unused piece of plate colored in gray is considered waste, while that
filled with dots is considered leftover. The objective function f(P) is defined as

f(P)y=H-W-(|P|=1)+H-r(P),

where | P| denotes the number of plates used, H - W - (|P| — 1) is the total area of the first |P| — 1
plates. Furthermore, r(P) gives the position of the last I-cut on the last cutting pattern of P.
Thus, H - r(P) represents the used area of the last plate.

Let A be the set of feasible solutions for 2DCSP-SC. This problem consists of finding a solution
P* = argminpc 5 f(P), i.e., the cutting patterns that use the least amount of raw material to cut
all items in 1. When there is only one item per stack, this problem reduces to 2DCSP-3S. Since
2DCSP-38S is NP-Hard [17], 2DCSP-SC is also NP-Hard.

As there is no known technique to design a polynomial-time exact algorithm for NP-Hard
problems, this paper focus on heuristic algorithms. However, as far as we can tell, the new prece-
dence constraints introduced in [13] preclude the use of most algorithms in the literature related
to 2DCSP-3S [11, 14, 15], except those in [18], because they were not designed to consider item
precedence. Therefore, this paper adapts an Evolutionary Algorithm (EA) described in [18], and
also proposes a Biased Random-key Genetic Algorithm (BRKGA) to address the 2DCSP-SC. Com-
putational experiments show that BRKGA outperforms the EA of the literature.

The remainder of this paper is organized as follows. First, related work are discussed in Section 2.
Next, a constructive algorithm for 2DCSP-SC, which is used as a decoder for the other heuristics,
is proposed in Section 3. Then, the adaptation to 2DCSP-SC of the Evolutionary Algorithm of [1§]
is detailed in Section 4, and the proposed Biased Random-key Genetic Algorithm is described in
Section 5. Finally, computational experiments are reported in Section 6 and concluding remarks
are drawn in the last section.

2 Related work

A Sequential Heuristic Procedure (SHP) was proposed in [19]. The first stage of this heuristic
selects the height of the cut, the second stage the length of the cut, and the third stage the number
of times the generated cut pattern will be used. The authors concluded that the performance of the
proposed heuristic is better than heuristics that use fixed measures to define the sizes of the cuts.
A variant of 2DCSP-3S in which the plates may contain defects and vary in size was addressed
in [20]. The proposed heuristic first sorts the larger sides of the plates in ascending order, and the
items are sorted in decreasing order following the same criteria. The algorithm tries to position
the widest items on the smallest plates and after all the items are positioned, it checks if any item
was placed in any defective area; if so, that item is removed, and the possibility of being added to
any of the plates already used is verified. Computational experiments showed that these heuristics
obtained better results than those presented in [21].
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A heuristic procedure based on Variable Neighborhood Search (VNS) was proposed in [22]. To
build an initial solution, three heuristics based on the first-fit approach of [23] were used (3-staged
First Fit Decreasing Height with rotations, matching step and Fill Strip), so that the best solution
provided by them is selected. Computational experiments concluded that the heuristic proposed
in this work provided better solutions than the VNS approach present in [23].

A heuristic that combines a recursive approach and a Beam Search algorithm was proposed
in [15]. Unlike branch and bound algorithms, in Beam Search, only elite nodes with high potential
are investigated [24]. In this approach, the recursion is used to generate segments of strips, and
a Beam Search heuristic is used to obtain the 3-staged cutting patterns considering usable left-
over. Computational experiments showed that the heuristic proposed in this work obtained better
solutions than those of [6].

A Finite First Fit Heuristic (FFF), an Evolutionary Algorithm (EA), and two strategies based
on branch-and-bound have been proposed to solve 2DCSP-3S in [18]. Computational experiments
showed that EA obtained better results than the other heuristics. As far as we know, FFF and EA
are the best heuristics in the literature that can be adapted to handle the precedence constraint
of 2DCSP-SC. Therefore, they are adapted to 2DCSP-SC in sections 3 and 4, respectively.

3 Finite First Fit (FFF) heuristic

In this section, we extend the FFF heuristic of [18] to 2DCSP-SC. This heuristic assumes that all
the items are oriented in such a way that their width is greater than or equal to their height, and
it does not perform any further rotations. It starts with an empty solution, and, at each iteration,
it inserts an item in the solution using the first fit approach described in Algorithm 1.

FFF inserts the items in the order they appear in a permutation IT of the items in I. This
permutation is such that if an item i precedes an item j in any stack, ¢ precedes j in I1. This
property is necessary to guarantee that there is always a place to insert an item without violating
the precedence constraints. That is the case because when an item is inserted in the solution,
all preceding items have already been inserted. In the worst case scenario, the next item can be
inserted in a new empty plate. The sorting algorithm used to generate permutations that satisfy
this property is explained in the next section.

Instead of describing Algorithm 1 using the usual recursive tree representation of a solution,
we adopt a novel representation based on what we called a k-boxr representation. A 0-box by
definition is a plate. Therefore, it has always height H and width W. Such a box is divided into
a sequence of 1-boxes. Therefore, a 1-box has always height H, but can have variable width. It
is assumed that the 1-boxes are placed contiguously from the left to the right of their respective
0-box. Therefore, all the area of the 0-box not covered by a 1-box is unused area (waste or leftover).
Analogously, a 1-box is divided into a sequence of 2-boxes. Therefore, a 2-box has always the same
width of its respective 1-box, but can have variable height. It is assumed that the 2-boxes are
placed contiguously from the bottom to the top of their respective 1-box. Therefore, all the area of
the respective 1-box not covered by a 2-box is waste. Similarly, a 2-box is divided into a sequence of
3-boxes, each one associated to exactly one item. Therefore, a 3-box has always the same height of
its respective 2-box, but its width is exactly the same as that of its corresponding item. It is worth
pointing out that, from the width of the 3-box, one can infer if the corresponding item was rotated
or not. Besides, it is implicit that if the height of a 3-box is larger than that of the corresponding
item, a trimming 4-cut occurs. It is also assumed that the 3-boxes are placed contiguously from
the left to the right of their respective 2-boxes. Therefore, all the area of the respective 2-cut not
covered by a 3-box is waste. It can be observed that there is a direct correspondence between a
k-box and a level k£ node in the cutting pattern tree. The advantage of the k-box representation
is that one does not need to account to the exact position of the nested k-cuts, but only to the
size of the corresponding k-boxes, which can be inferred from the width and height of the items in
each box.
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Algorithm 1 Finite First-Fit (FFF)
Input: Z and I
Output: P

1: P+ ]

2: for each i in IT do

3: for each t° in P do

4: for each b' in b° do

5: for each b? in b do

6: if 4 fits in b? respecting the precedence constraint then
7 b3 < 4, and b2 < b? : b°

8: continue to the next item in IT

9: end if

10: end for

11: if [i] fits in b' respecting the precedence constraint then
12: b% < [i], and b' < b* : b?

13: continue to the next item in IT

14: end if

15: end for

16: if [[i]] fits in b° respecting the precedence constraint then
17: b« [[d]], and b° « b° : b

18: continue to the next item in IT

19: end if

20: end for

21: b < [[[i]]}, and P < P : b°
22: end for

23: return P

The pseudo-code of FFF is described in Algorithm 1. This heuristic receives an instance Z of
2DCSP-SC and a permutation IT of the items in I, and returns a solution corresponding to a
sequence of cutting patterns P that describes how to cut all the items in I without breaking the
precedence constraints. In line 1, an empty partial solution P is initialized. At each iteration of the
loop of lines 2 to 22, the next item ¢, according to the permutation I7, is inserted in the solution.
Next, at each iteration of the loop of lines 3 to 20, FFF scans every 0-box 4% in the order they
appear in P. Then, at each iteration of the loop of lines 4 to 15, FFF evaluates every 1-box b' in
the order they appear in b°. Following, at each iteration of the loop of lines 5 to 10, FFF inspects
every 2-box b? in the order they appear in bl. If the item i fits in b? (see line 6), a new 3-box with
i is initialized and is appended to b? in line 7, and the heuristic continues to the next item in I7
in line 8. It is worth noting that only the 2-boxes whose items are cut after those that precede ¢
are considered. Otherwise, ¢ could be cut before an item that precedes it. On the other hand, if 4
does not fit in b? but it fits as a new 2-box on top of b! without breaking the precedence constraint
(see line 11), a new 2-box (containing a single 3-box with i) is appended to b' in line 12, and FFF
continues to the next item in IT in line 13. Moreover, if the latter is not possible, but i fits as a
new 1-box to the right of b° without breaking the precedence constraint (see line 16), a new 1-box
(containing a single 2-box with i) is appended to b° in line 17, and FFF continues to the next item
in IT in line 18. Finally, if ¢ does not fit any box of the current solution, a new 0-box (plate) is
appended to P in line 21 with a single 1-box containing . When all the items are inserted in P
the solution is returned in line 23. This heuristic is used as a decoder in both the Evolutionary
Algorithm of [18] and the Biased Random-key Genetic Algorithm introduced in Sections 4 and 5,
respectively.

4 An Evolutionary Algorithm for 2DCSP-SC

In this section, the Evolutionary Algorithm (EA) of [18] is adapted to address 2DCSP-SC. This
algorithm represents a solution as an |I|-vector, in which each component is a real number (referred
to as key) in the range [0, 1] associated with an item in I. Each solution is decoded by a decoding
heuristic that receives the vector of keys and builds a feasible solution for 2DCSP-SC. Let k; be
the key associated with the item ¢ € I and w; be the width of ¢, the decoding of EA consists of two
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steps. First, a permutation IT is generated accordingly to the following selection sort algorithm.
Let p; = k; - w;, at each iteration of the sorting algorithm, the item with the largest value of p;,
that is on top of a stack in S, is popped from its stack and added to the end of IT. Then, the FFF
heuristic is run with the resulting permutation of items. The cost of the solution returned by FFF
is used as the fitness of the chromosome.

EA is a steady-state evolutionary algorithm, where each offspring replaces the worst solution in
the population. Initial solutions are created at random, and at each iteration two parent solutions
are selected randomly. Then, the Order 3 Crossover (OX3) of [25] is applied to these solutions
to generate a new offspring. Two mutation operators are used: (i) the Reciprocal Exchange (RX),
which chooses two items at random and swaps their keys; and (i¢) the Block Exchange (BX), which
swaps the keys of two non-overlapping blocks of consecutive items. The size of these blocks is set to
DRL as suggested by [18], where R is a random value in the interval (0, le%ﬂ, in order to allow
shorter blocks to be chosen more likely. The number of mutations applied to each new offspring
solution is chosen as a Poisson-distributed random variable with expected value 2. Every time a
mutation is applied to the offspring, either RX or BX is randomly chosen with equal probability.

5 Biased random-key genetic algorithm

Random-key Genetic Algorithms (RKGA) were first introduced by Bean [26] for combinatorial
optimization problems for which solutions can be represented as a permutation vector. In this
approach, two parents are selected at random from the entire population to implement the crossover
operation in the implementation of a RKGA. Parents are allowed to be selected for mating more
than once in a given generation.

A Biased Random-key Genetic Algorithm (BRKGA) differs from a RKGA in the way parents
are selected for crossover, see Gongalves and Resende [27] for a review. In a BRKGA, each element
is generated combining one element selected at random from the elite solutions in the current
population, while the other is a non-elite solution. We say the selection is biased since one parent
is always an elite individual and because this elite solution has a higher probability of passing its
genes to the offsprings, i.e., to the new generation. A BRKGA provides a better implementation of
the essence of Darwin’s principle of “survival of the fittest” than the RKGA, since an elite solution
has a higher probability of being selected for mating and the offsprings have a higher probability
of inheriting the genes of the elite parent.

The BRKGA for 2DCSP-SC evolves a population of chromosomes that consists of |I|-vectors
of keys, which are decoded exactly as in the Evolutionary Algorithm described in Section 4. We
use the parameterized uniform crossover scheme proposed in [28] to combine two parent solutions
and produce an offspring. In this scheme, the offspring inherits each of its keys from the best fit
of the two parents with probability p > 0.5 and from the least fit parent with probability 1 — p.
BRKGA do not make use of the standard mutation operator, where parts of the chromosomes are
changed with a small probability. Instead, the following concept of mutants is used: a fixed number
of mutant solutions are introduced in the population in each generation, randomly generated in
the same way as in the initial population. Mutants play the same role of the mutation operator
in traditional genetic algorithms, diversifying the search and helping the procedure to escape from
locally optimal solutions.

The keys associated to each item are randomly generated in the initial population. At each
generation, the population is partitioned into two sets: TOP and REST. Consequently, the size
of the population is |TOP| + |REST|. Subset TOP contains the best solutions in the population.
Subset REST is formed by two disjoint subsets: MID and BOT, with subset BOT being formed
by the worst elements on the current population. As illustrated in Figure 4, the chromosomes
in TOP are simply copied to the population of the next generation. The elements in BOT are
replaced by newly created mutants that are placed in the new set BOT. The remaining elements
of the new population are obtained by crossover with one parent randomly chosen from TOP and
the other from REST. This distinguishes a biased random-key GA from the random-key genetic
algorithm of Bean [26] (where both parents are selected at random from the entire population).
Since a parent solution can be chosen for crossover more than once in a given generation, elite
solutions have a higher probability of passing their random keys to the next generation. In this way,
|MID| = |REST| — |BOT)| offspring solutions are created. The algorithm stops when a maximum
elapsed time is reached.
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Fig. 4: Population evolution between consecutive generations of a BRKGA.

6 Computational experiments

The computational experiments reported in this section evaluates the performance of the BRKGA
and the EA heuristics. These algorithms were implemented in C++ and compiled with GNU gce
version 6.3. The population size of both heuristics was set to 1000 solutions, and the stopping
criteria was set to 10 minutes of running time. All experiments were performed in a single core of
an Intel Xeon machine with 2.00 GHz of clock speed and 16 GB of RAM. As both BRKGA and
EA relies on stochastic operators, we ran these heuristics 20 times for each instance using different
seeds for the Mersenne Twister pseudo-random number generator [29].

Three sets of instances were used in the experiments, namely Set A, Set B, and Set X. These
instances were adapted from realistic ones employed in the ROADEF Challenge 2018, which tackled
a similar problem commissioned by Saint-Gobain Glass France, which is one of the world’s leading
flat glass manufacturers. The original instances resemble scenarios found in Saint-Gobain factories
and can be retrieved from the website http://www.roadef .org/challenge/2018/en/instances.
php. We adapted these instances by ignoring the data regarding specific constraints of Saint-
Gobain’s guillotines, and using only the data necessary for 2DCSP-SC. In every instance, the
plates have W = 6000 and H = 3210. Table 1 presents the characteristics of each instance set.
One can see that the instances greatly vary. The number of stacks range from 1 to 247, while the
number of items stretch from 5 to 656. Furthermore, the smallest width of an item is only 345,
while the maximum width of an item is equal to 3495. Additionally, the height of the items also
vary between 123 and 2010.

Table 1: Characteristics of each instance set
‘ Set A Set B Set X

Number of instances 20 15 15
Min. number of itens 5 68 124
Ave. number of items | 101.95 303.87 284.33
Max. number of items| 392 656 412
Min. number of stacks 1 2 2
Ave. number of stacks| 11.20 32.00 28.53
Max. number of stacks| 72 241 247
Min. item width 345 351 353
Ave. item width 1317.35 1410.69 1317.40
Max. item width 3495 2952 2813
Min. item height 137 123 193
Ave. item height 594.82 668.63 600.03
Max. item height 2010 1759 1828
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The results for this experiment are displayed in Tables 2 to 4, whereas each table gives the
result for a different instance set. The first column of each table displays the instance name, while
the second column presents a lower bound (LB) computed as ) ., w;h;, i.e., the sum of the area
of all items in I. The third and fourth columns present the results for the BRKGA. The third
column presents the relative optimality gap of the BRKGA’s fitness computed against the lower
bound displayed in the second column, while the fourth column gives the coefficient of variation
(cv) of the algorithm’s results. The same information is given for the EA in the fifth and sixth
columns, respectively. The last line of each table presents the average relative optimality gap and
the average coefficient of variation for each heuristic.

Table 2: Results for the Set A of instances
BRKGA EA
instance LB gap (%) cv (%) gap (%) cv (%)

Al 4514704 10.87  0.00 10.87  0.00
A2 77201851 13.32 1.74 13.64 0.92
A3 41796990 19.79 1.10 20.80 1.19
A4 41796990 19.90 0.92 21.06 1.17
A5 56570007 15.55 1.25 17.77 1.16
A6 43254870 14.40 0.82 15.81 0.11
A7 70195170 20.02 1.16 22.25 1.17
A8 138045196 20.53 1.92 2245 0.80
A9 44879034 21.47 4.63 25.53 0.81
A10 71100239 21.33 1.36 27.08 244
All 64444211 19.18 0.23 21.37 143
A12 29180006 20.52 2.58 29.01 0.71
Al13 213400977 11.75 0.73 14.20 1.02
Al4 226360542 17.98 0.99 20.69 1.03
Al15 238633039 16.87 1.33 20.07 0.71
Al6 37325677 2237 0.00 2359 1.21
A17 19623149 54.83 0.00 54.83 0.00
Al18 60282102 2242 2.00 27.06 2.25
A19 41044876 20.33 1.23 2823 4.46
A20 14710475 35.25 0.00 3525 0.00

Average 2093 1.19 23,58 1.12

One can see from these tables that the relative optimality gap of BRKGA was smaller or equal
than that of EA for all evaluated instances. BRKGA obtained an average relative optimality gap
of 20.93%, 12.48%, and 13.89% for the sets A, B, and X of instances, respectively, while that
of EA was 23.58%, 14.68%, and 16.58%. Therefore, it can be concluded that BRKGA obtained
better results than EA when solving the proposed instances. However, one can observe that EA is
a more stable method than BRKGA, as its average coefficient of variation was smaller than that
of BRKGA for all sets of evaluated instances.

7 Concluding remarks

In this work, we tackled the Two-dimensional Three-staged Cutting Stock Problem with Stack Con-
straints (2DCSP-SC). We extended the Evolutionary Algorithm (EA) described in [18] to address
the 2DCSP-SC. Furthermore, we proposed a Biased Random Key Genetic Algorithm (BRKGA).
Both algorithms use the Finite First Fit (FFF) heuristic as a decoder. Computational experiments,
performed on three sets of realistic instances, show that BRKGA found solutions with smaller op-
timally gaps in all but one of the instances tested.

Future works may explore exact methods, such as branch-and-bound algorithms, to improve
the lower bounds proposed in this paper. Alternatively, other heuristic methods that do not rely
in Genetic Algorithms could be devised for the problem, such as heuristics based on local search.
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Table 3: Results for the Set B of instances
BRKGA EA
instance LB gap (%) cv (%) gap (%) cv (%)

B1 77110392 10.12  1.00 9.11 0.24
B2 315354085 18.47 1.13 21.04 0.66
B3 349989487 15.36 0.72 16.79  0.62
B4 148205615 1598 0.23 18.17 0.74
B5 319711555 37.81 0.00 37.81 0.00
B6 192874073 15.69 145 18.89 0.87
Br 187746291 11.82 141 1717 1.03
B8 339397811 1344 0.65 16.68 0.68
B9 293827643 12.06 0.61 14.35 0.82
B10 345904837 14.32 1.23 1847 0.99
B11 336052870 14.34 0.84 1881 0.53
B12 259876763 18.19 0.80 22,51 0.54
B13 484072875 17.81 094 2236 0.66
B14 176124110 17.05 132 21.33 0.88
B15 432558079 17.07 0.71 20.20 0.91

Average 12.48 0.86 14.68 0.67
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Abstract. Grammatical inference consists in learning a formal grammar (as a set of rewrite
rules or a finite state machine). We are concerned with learning Nondeterministic Finite
Automata (NFA) of a given size from samples of positive and negative words. NFA can
naturally be modeled in SAT. The standard model [1] being enormous, we also try a model
based on prefixes [2] which generates smaller instances. We also propose a new model based
on suffixes and a hybrid model based on prefixes and suffixes. We then focus on optimizing the
size of generated SAT instances issued from the hybrid models. We present two techniques
to optimize this combination, one based on Iterated Local Search (ILS), the second one
based on Genetic Algorithm (GA). Optimizing the combination significantly reduces the SAT
instances and their solving time, but at the cost of longer generation time. We, therefore,
study the balance between generation time and solving time thanks to some experimental
comparisons, and we analyze our various model improvements.

Mots-Clefs. Constraint problem modeling, Grammar inference, SAT, model reformulation,
NFA inference.

1 Introduction

Grammatical inference [3] (or grammar induction) is concerned with the study of algorithms
for learning automata and grammars from some observations. The goal is thus to construct
a representation that accounts for the characteristics of the observed objects. This research
area plays a significant role in numerous applications, such as compiler design, bioinformatics,
speech recognition, pattern recognition, machine learning, and others.

In this article, we focus on learning a finite automaton from samples of words S = ST US™,
such that ST is a set of positive words that must be accepted by the automaton, and
S7 is a set of negative words to be rejected by the automaton. Due to their determinism,
deterministic finite automata (DFA) are generally faster than non deterministic automata
(NFA). However, NFA are significantly smaller than DFA in terms of the number of states.
Moreover, the space complexity of the SAT models representing the problem is generally due
to the number of states. Thus, we focus here on NFA inference. An NFA is represented by
a 5-tuple (Q, X, A, q1, F) where @Q is a finite set of states, the vocabulary X' is a finite set
of symbols, the transition function A : Q x X — P(Q) associates a set of states to a given
state and a given symbol, ¢1 € Q is the initial state, and F' C @ is the set of final states.
The problem of inferring NFA has been undertaken with various approaches (see, e.g., [1]).
Among them, we can cite ad-hoc algorithms such as DeLeTe2 [4] that is based on state
merging methods, or the technique of [5] that returns a collection of NFA. Some approaches
use metaheuristics for computing NFA, such as hill-climbing [6] or genetic algorithm [7].

A convenient and declarative way of representing combinatorial problems is to model them
as a Constraint Satisfaction Problem (CSP [8]) (see, e.g., [1] for an INLP model for inferring
NFA, or [9] for a SAT (the propositional satisfiability problem [10]) model of the same
problem). Parallel solvers have also been used for minimizing the inferred NFA size [11,2].
Orthogonally to the approaches cited above, we do not seek to improve a solver, but to
generate a model of the problem that is easier to solve with a standard SAT solver. Our
approach is similar to DFA inference with graph coloring [12], or NFA inference with complex
data structures [9]. Modeling thus consists in translating a problem into a CSP made of
decision variables and constraints over these variables. As a reference for comparisons, we
start with the basic SAT model of [9]. The model, together with a sample of positive and
negative words, lead to a SAT instance to be solved by a classic SAT solver that we use as a
black box. However, SAT instances are gigantic, e.g., our base model space complexity is in
the order of O(k!“+!) variables, and in O(|w|.k“+!) clauses, where k is the number of states
of the NFA, and w is the size of the longest positive word of the sample. The second model,
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PM, is based on intermediate variables for each prefix [2] which enables to compute only
once parts of paths that are shared by several words. We propose a third model, SP, based on
intermediate variables for suffixes. Although the two models could seem similar, their order
of size is totally different. Indeed, PM is in O(k?) while SM is in O(k®). We then propose
hybrid models consisting in splitting words into a prefix and a suffix. Modeling the beginning
of the word is made with PM while the suffix is modeled by SM. The challenge is then to
determine where to split words to optimize the size of the generated SAT instances. To this
end, we propose two approaches, one based on iterated local search (ILS), the second one
on genetic algorithm (GA). Both permit to generate smaller SAT instances, much smaller
than with the DM model and even the PM model. However, with GA, the generation time
is too long and erases the gain in solving with the Glucose SAT solver [13]. But the hybrid
instances optimized with the ILS are smaller, and the generation time added to the solving
time is faster than with PM. Compared to [9], which is the closest work on NFA inferring,
we always obtain significantly smaller instances and solving time.

This paper is organized as follows. In Section 2 we present the direct model, the prefix model,
and we propose the suffix model. We then combine suffix and prefix model to propose the
new hybrid models (Section 3). Hybrid models are optimized with iterated local search (Sub-
section 3.2), and with genetic algorithm in Sub-section 3.3. We then compare experimentally
our models in Section 4 before concluding in Section 5.

2 SAT Models

Given an alphabet X = {s1,...,8,} of n symbols, a training sample S = ST U S~, where
ST (respectively S7) is a set of positive words (respectively negative words) from £*, and
an integer k, the NFA inference problem consists in building a NFA with k states which
validates words of ST, and rejects words of S~. Note that the satisfaction problem we
consider in this paper can be extended to an optimization problem minimizing k [2].
Let us introduce some notations. Let A = (Q, X, q1, F) be a NFA with: Q = {q1,...,qx} a
set of k states, X' a finite alphabet, ¢; the initial state, and F' the set of final states. The
empty word is noted A\. We denote by K the set of integers {1,...,k}.
We consider the following variables:
— k the size of the NFA we want to learn,
— a set of k Boolean variables F = {fi,..., fi} determining whether states ¢1 to ¢i are
final or not,
—and A = {bsqqls € Yandi,j € K} a set of n.k’ Boolean variables defining the
existence or not of the transition from state g; to state g; with the symbol s, for each
qi, 4j, and s.
The path i1,42,...,inq1 for w = wi...w, exists if and only if d = duw,,grgy A --- A
6wmm> is true. We say that the conjunction d is a c_path, and D g7 is the set of
all c_paths for the word w between states ¢; and g;.

2.1 Direct Model

This simple model has been presented in [9]. It is based on 3 sets of equations:
1. If the empty word is in ST or S™, we can fix whether the first state is final or not:

ifxest, A (1)
itxesS , -fi (2)
2. For each word w € ST, there is at least a path from ¢; to a final state g;:
V V (@an) 3)
JEK dEDy gy

With the Tseitin transformations [14], we create one auxiliary variable for each combi-
nation of a word w, a state j € K, and a c_path d € Du,gq;: auTw,j,a <> d A f;. Hence,
we obtain a formula in CNF for each w:

N N [auzeav(dnf) (4)

JEK d€Dwy,gyq

A N (s jav-dv=g) )

JEK deDw,&i’?};

\/ \/ AUTw,j,d (6)

JEK dEDw’,ﬁ"@;
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number of cl. arity | Constraints bor of
> number of var|reason

(ST (e + DA 2 (4) " eason ___

+ lwa | 9 4) nal states
|7 |-k ] + ( E? transitions §
15| s | ) n. ansitions
G| | 1 7 |[SH|.k. I+ Constraints (3)
1571 jw-| + (7) Table 2. Variables for DMy

Table 1. Clauses for DMy

3. For each w € S™ and each gj, either there is no path state ¢ to g;, or ¢; is not final:

-1V V @an) (1)

JEK dEDw,xﬁ'?};

Thus, the direct constraint model DM}, for building a NFA of size k is:

DMy = )\ ((4)/\(5)/\(6))/\ A @

wesSt weS—

and is possibly completed by (1) or (2) if A€ ST or A € S™.

Size of the models (see [9] for details) Consider wi and w_, the longest word of ST
and S~ respectively. Table 1 presents the number of clauses (Column 1) and their arities
(Column 2), which are an upper bound of a given constraint group (last column) for the
model SMj. Table 2 presents the upper bound of the number of Boolean variables that are
required and why the are required. We can see on Tables 1 and 2 that the space complexity
of the DMj, is huge (O(|ST|.k.1“+!) variables, and O(|S*|.(Jwy|+1).k!“+) clauses) and with
large clauses (up to arity of |wy|+ 2), and that only small instances for a small number of
states will be tractable. It is thus obvious that it is important to improve the model D Mj,.

2.2 Prefix Model [2]

Let Pref(w) be the set of all the non-empty prefixes of the word w and, by extension,

Pref(W) = Uwew Pref(w) the set of prefixes of the words of the set W. For each w €

Pref(S), we add a Boolean variable p.,grg7 which determines whether there is or not a

c_path for w from state ¢q1 to ¢;. Note that these variables can be seen as labels of the Prefix

Tree Acceptor (PTA) for S [3]. The problem can be modeled with the following constraints:
1. For all prefix w = a with w € Pref(S), and a € X, there is a c_path of size 1 for w:

\/ boaiar © Poaiar (®)
ieK
With the Tseitin transformations, we can derive a CNF formula. It is also possible to

directly encode 94,577 and pa,zrg; as the same variable. Thus, no clause is required.
2. For all words w € ST — {\}:

\/ Pw.ga A fi 9)
ieK

With the Tseitin transformations [14], we create one auxiliary variable for each com-
bination of pw,grq; and the status (final or not) of the state ¢;: auzw: > puw.grg A fi-
Hence, for each w, we obtain a formula in CNF:

N\ (0@, V pugra) A (nauzw V £) (10)
€K
/\ (aUTw,i V —pw,grg V i) (11)
€K

\/ QUL (12)

€K

3. For all words w € S~ — {A}, we obtain the following CNF constraint:

)\ Cpuara V = F) (13)

i€ K
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number of cl.| arity | Constraints
2.k.|ST| 2l (10)
+

k.57 3 (11) number of var|reason
k k+1 (12)
K|S~ 9 (13) k final states F’
7r. k2 9 (15) n.k? transitions ¢

2 |S*|.k Constraints (9)
mk 2 (16) ) :
k2 3 (17) w.k Qonstramts (14)
ok ka1 (18) Table 4. Variables for PMj,
m.k? 2 (19)

Table 3. Clauses for PMj,

4. For all prefix w = va, w € Pref(S), v € Pref(S) and a € X:
N\ oz < (\/ poaia Adograr) (14)
ieK jEK

Applying the Tseitin transformations, we create one auxiliary variable for each com-
bination of existence of a c_path from ¢1 to ¢ (pv,grg;) and the transition g, 5557
AUTv,a,5,i <+ Po,grq; A da,g7a;- Then, (14) becomes:

N\ oz < (\) auznai.)

ieK jEK

For each w € Pref(S), we obtain constraints in CNF:

N (CauzvaiiV poare) (15)
(i,j)€K?2
/\ (—\auxv,a,j,i V (5‘1,@) (16)
(i,5)eK?
/\ (au®v,aj.i V ~Pw.gig; V "0a.q5a7) (17)
(i,5)€K?
N\ Croga v (\/ auzeasi) (18)
€K JEK
N\ Poga V-auzea;i) (19)
(i,j)EK?

Thus, the constraint prefix model PMj, for building a NFA of size k is:

PM, = N ((10)/\.../\(12))/\ A @n A\ 5 A.A9)

weS+ weS— wePref(S)

and is possibly completed by (1) or (2) if A€ ST or A € S™.

Size of the models Consider w,, the longest word of ST, w_, the longest word of S~
o = Ywes|w|, and m, the number of prefix obtained by Pref(S) with a size larger than 1
(m = {z|z € Pref(S),|z| > 1}|), then:

maz (], Jw-]) < 7 < o < ST | 4157 fw]

The space complexity of the PMj, model is thus in O(c.k?) variables, and in O(c.k?) binary
and ternary clauses, and O(c.k) (k + 1)-ary clauses.

2.3 Suffix Model
We now propose a suffix model (SMjy), based on Suf(S), the set of all the non-empty suffixes
of all the words in S. The main difference is that the construction starts from every state

and terminates in state g1. For each w € Suf(S), we add a Boolean variable pu,zq; which
determines whether there is or not a c_path for w from state g; to g;. To model the problem,
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Constraints (10), (11), (12), and (13) remain unchanged and creation of the corresponding
auxiliary variables auz., ; as well.

For each suffix w = a with w € Suf(S), and a € X, there is a c_path of size 1 for w:
\/ Oa,q7a; ¢ Pa,gia] (20)
(i,5)EK?
We can directly encode da,z757 and pa,g7g; as the same variable. Thus, no clause is required.
For all suffix w = av, w € Suf(S), v € Suf(S) and a € X:
N\ Gugz < (\/ doga Apoas)) (21)
(i,§)€K? kEK

We create one auxiliary variable for each combination of existence of a c_path from g¢x to g;
(Pv,@ra;) and the transition da,7757: AUTv,a,i,k,5 <> da,g7a7 N Do.aid]
For each w = av, we obtain the following constraints (CNF formulas):

N (Cauwseins Vpoga) (22)

(i,4,k)EK3
N Cauzeain Voaga) (23)

(,5,k)EK3
/\ (@uZy,a,ik,j VY ~Pw,gra; V "0a,5707) (24)

(4,5,k)EK3
N Crogs Vv (\ auzeeirs)) (25)
(i,j)EK? keK
N GoaaV-auz,eirs)) (26)
(4,5,k)EK3

Note that some clauses are not worth being generated. Indeed, it is useless to generate paths
starting in states different from the initial state ¢qi, except when the w is in S, and w is
also the suffix of another word from S. Removing these constraints does not change the
complexity of the model. This can easily be done at generation time, or we can leave it to
the solver, which will detect it and remove the useless constraints.

Thus, the constraint prefix model PM; for building a NFA of size k is:

SMy =\ ((10)/\.../\(12))/\ A ayan A @A A2

weSt weES™ weEPref(S)\S

and is possibly completed by (1) or (2) if A€ ST or A € S™.

Size of the models Consider w4, w—, o, and 7 as defined in the prefix model. Table 5
presents the number of clauses (first column) and their arities (Column 2) which are an
upper bound of a given constraint group (last column) for the model SMj,. Table 6 presents
the upper bound of t